

Python language bindings for ev3dev

[image: _images/ev3dev-lang-python.svg]
 [https://travis-ci.org/rhempel/ev3dev-lang-python][image: Documentation Status]
 [http://python-ev3dev.readthedocs.org/en/stable/?badge=stable]A Python3 library implementing an interface for ev3dev [http://ev3dev.org] devices,
letting you control motors, sensors, hardware buttons, LCD
displays and more from Python code.

If you haven’t written code in Python before, you’ll need to learn the language
before you can use this library.

Getting Started

This library runs on ev3dev [http://ev3dev.org]. Before continuing, make sure that you have set up
your EV3 or other ev3dev device as explained in the ev3dev Getting Started guide [http://www.ev3dev.org/docs/getting-started/].
Make sure that you have a kernel version that includes -10-ev3dev or higher (a
larger number). You can check the kernel version by selecting “About” in Brickman
and scrolling down to the “kernel version”. If you don’t have a compatible version,
upgrade the kernel before continuing [http://www.ev3dev.org/docs/tutorials/upgrading-ev3dev/]. Also note that if the ev3dev image you downloaded
was created before September 2016, you probably don’t have the most recent version of this
library installed: see Upgrading this Library to upgrade it.

Once you have booted ev3dev and connected to your EV3 (or Raspberry Pi / BeagleBone)
via SSH [http://www.ev3dev.org/docs/tutorials/connecting-to-ev3dev-with-ssh/], you should be ready to start using ev3dev with Python: this library
is included out-of-the-box. If you want to go through some basic usage examples,
check out the Usage Examples section to try out motors, sensors and LEDs.
Then look at Writing Python Programs for Ev3dev to see how you can save
your Python code to a file.

Make sure that you look at the User Resources section as well for links
to documentation and larger examples.

Usage Examples

To run these minimal examples, run the Python3 interpreter from
the terminal using the python3 command:

$ python3
Python 3.4.2 (default, Oct 8 2014, 14:47:30)
[GCC 4.9.1] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>>

The >>> characters are the default prompt for Python. In the examples
below, we have removed these characters so it’s easier to cut and
paste the code into your session.

Required: Import the library

If you are using an EV3 brick (which is the case for most users), add the
following to the top of your file:

import ev3dev.ev3 as ev3

If you are using a BrickPi, use this line:

import ev3dev.brickpi as ev3

Controlling the LEDs with a touch sensor

This code will turn the left LED red whenever the touch sensor is pressed, and
back to green when it’s released. Plug a touch sensor into any sensor port and
then paste in this code - you’ll need to hit Enter after pasting to complete
the loop and start the program. Hit Ctrl-C to exit the loop.

ts = ev3.TouchSensor()
while True:
 ev3.Leds.set_color(ev3.Leds.LEFT, (ev3.Leds.GREEN, ev3.Leds.RED)[ts.value()])

Running a motor

Now plug a motor into the A port and paste this code into the Python prompt.
This little program will run the motor at 500 ticks per second, which on the EV3
“large” motors equates to around 1.4 rotations per second, for three seconds
(3000 milliseconds).

m = ev3.LargeMotor('outA')
m.run_timed(time_sp=3000, speed_sp=500)

The units for speed_sp that you see above are in “tacho ticks” per second.
On the large EV3 motor, these equate to one tick per degree, so this is 500
degress per second.

Using text-to-speech

If you want to make your robot speak, you can use the Sound.speak method:

ev3.Sound.speak('Welcome to the E V 3 dev project!').wait()

To quit the Python REPL, just type exit() or press Ctrl-D .

Make sure to check out the User Resources section for more detailed
information on these features and many others.

Writing Python Programs for Ev3dev

Every Python program should have a few basic parts. Use this template
to get started:

#!/usr/bin/env python3
from ev3dev.ev3 import *

TODO: Add code here

The first two lines should be included in every Python program you write
for ev3dev. The first allows you to run this program from Brickman, while the
second imports this library.

When saving Python files, it is best to use the .py extension, e.g. my-file.py.
To be able to run your Python code, your program must be executable. To mark a
program as executable run chmod +x my-file.py. You can then run my-file.py
via the Brickman File Browser or you can run it from the command line via $./my-file.py

User Resources

	Library Documentation

	Class documentation for this library can be found on our Read the Docs page [http://python-ev3dev.readthedocs.org/en/stable/] .
You can always go there to get information on how you can use this
library’s functionality.

	ev3python.com

	One of our community members, @ndward, has put together a great website
with detailed guides on using this library which are targeted at beginners.
If you are just getting started with programming, we highly recommend
that you check it out at ev3python.com [http://ev3python.com/]!

	Frequently-Asked Questions

	Experiencing an odd error or unsure of how to do something that seems
simple? Check our our FAQ [http://python-ev3dev.readthedocs.io/en/stable/faq.html] to see if there’s an existing answer.

	ev3dev.org

	ev3dev.org [http://ev3dev.org] is a great resource for finding guides and tutorials on
using ev3dev, straight from the maintainers.

	Support

	If you are having trouble using this library, please open an issue
at our Issues tracker [https://github.com/rhempel/ev3dev-lang-python/issues] so that we can help you. When opening an
issue, make sure to include as much information as possible about
what you are trying to do and what you have tried. The issue template
is in place to guide you through this process.

	Demo Robot

	Laurens Valk of robot-square [http://robotsquare.com/] has been kind enough to allow us to
reference his excellent EXPLOR3R [http://robotsquare.com/2015/10/06/explor3r-building-instructions/] robot. Consider building the
EXPLOR3R [http://robotsquare.com/2015/10/06/explor3r-building-instructions/] and running the demo programs referenced below to get
familiar with what Python programs using this binding look like.

	Demo Code

	There are demo programs [https://github.com/rhempel/ev3dev-lang-python/tree/master/demo] that you can run to get acquainted with
this language binding. The programs are designed to work with the
EXPLOR3R [http://robotsquare.com/2015/10/06/explor3r-building-instructions/] robot.

Upgrading this Library

You can upgrade this library from the command line as follows. Make sure
to type the password (the default is maker) when prompted.

sudo apt-get update
sudo apt-get install --only-upgrade python3-ev3dev

Developer Resources

	Python Package Index

	The Python language has a package repository [https://pypi.python.org/pypi] where you can find
libraries that others have written, including the latest version of
this package [https://pypi.python.org/pypi/python-ev3dev].

	The ev3dev Binding Specification

	Like all of the language bindings for ev3dev [http://ev3dev.org] supported hardware, the
Python binding follows the minimal API that must be provided per
this document [https://github.com/ev3dev/ev3dev-lang/blob/develop/wrapper-specification.md].

	The ev3dev-lang Project on GitHub

	The source repository for the generic API [https://github.com/ev3dev/ev3dev-lang] and the scripts to automatically
generate the binding. Only developers of the ev3dev-lang-python [https://github.com/rhempel/ev3dev-lang-python] binding
would normally need to access this information.

Python 2.x and Python 3.x Compatibility

Some versions of the ev3dev [http://ev3dev.org] distribution come with both Python 2.x [https://docs.python.org/2/] and Python 3.x [https://docs.python.org/3/] installed
but this library is compatible only with Python 3.

As of the 2016-10-17 ev3dev image, the version of this library which is included runs on
Python 3 and this is the only version that will be supported from here forward.

Contents

	API reference
	Motor classes
	Tacho motor

	Large EV3 Motor

	Medium EV3 Motor

	DC Motor

	Servo Motor

	Sensor classes
	Sensor

	Special sensor classes

	Other classes
	Remote Control

	Beacon Seeker

	Button

	Leds

	Power Supply

	Sound

	Screen

	Lego Port

	Working with ev3dev remotely using RPyC

	Frequently-Asked Questions
	My script works when launched as python3 script.py but exits immediately or throws an error when launched from Brickman or as ./script.py

Indices and tables

	Index

	Module Index

	Search Page

API reference

Each class in ev3dev module inherits from the base Device class.

	
class ev3dev.core.Device(class_name, name_pattern='*', name_exact=False, **kwargs)

	The ev3dev device base class

	
ev3dev.core.list_device_names(class_path, name_pattern, **kwargs)

	This is a generator function that lists names of all devices matching the
provided parameters.

	Parameters:

	
	class_path: class path of the device, a subdirectory of /sys/class.

	For example, ‘/sys/class/tacho-motor’.

	name_pattern: pattern that device name should match.

	For example, ‘sensor*’ or ‘motor*’. Default value: ‘*’.

	keyword arguments: used for matching the corresponding device

	attributes. For example, address=’outA’, or
driver_name=[‘lego-ev3-us’, ‘lego-nxt-us’]. When argument value
is a list, then a match against any entry of the list is
enough.

	
ev3dev.core.list_devices(class_name, name_pattern, **kwargs)

	This is a generator function that takes same arguments as Device class
and enumerates all devices present in the system that match the provided
arguments.

	Parameters:

	
	class_name: class name of the device, a subdirectory of /sys/class.

	For example, ‘tacho-motor’.

	name_pattern: pattern that device name should match.

	For example, ‘sensor*’ or ‘motor*’. Default value: ‘*’.

	keyword arguments: used for matching the corresponding device

	attributes. For example, address=’outA’, or
driver_name=[‘lego-ev3-us’, ‘lego-nxt-us’]. When argument value
is a list, then a match against any entry of the list is
enough.

	
ev3dev.core.list_motors(name_pattern='*', **kwargs)

	This is a generator function that enumerates all tacho motors that match
the provided arguments.

	Parameters:

	
	name_pattern: pattern that device name should match.

	For example, ‘motor*’. Default value: ‘*’.

	keyword arguments: used for matching the corresponding device

	attributes. For example, driver_name=’lego-ev3-l-motor’, or
address=[‘outB’, ‘outC’]. When argument value
is a list, then a match against any entry of the list is
enough.

	
ev3dev.core.list_sensors(name_pattern='sensor*', **kwargs)

	This is a generator function that enumerates all sensors that match the
provided arguments.

	Parameters:

	
	name_pattern: pattern that device name should match.

	For example, ‘sensor*’. Default value: ‘*’.

	keyword arguments: used for matching the corresponding device

	attributes. For example, driver_name=’lego-ev3-touch’, or
address=[‘in1’, ‘in3’]. When argument value is a list,

then a match against any entry of the list is enough.

Contents:

	Motor classes
	Tacho motor

	Large EV3 Motor

	Medium EV3 Motor

	DC Motor

	Servo Motor

	Sensor classes
	Sensor

	Special sensor classes

	Other classes
	Remote Control

	Beacon Seeker

	Button

	Leds

	Power Supply

	Sound

	Screen

	Lego Port

Motor classes

Tacho motor

	
class ev3dev.core.Motor(address=None, name_pattern='*', name_exact=False, **kwargs)

	The motor class provides a uniform interface for using motors with
positional and directional feedback such as the EV3 and NXT motors.
This feedback allows for precise control of the motors. This is the
most common type of motor, so we just call it motor.

The way to configure a motor is to set the ‘_sp’ attributes when
calling a command or before. Only in ‘run_direct’ mode attribute
changes are processed immediately, in the other modes they only
take place when a new command is issued.

	
COMMAND_RESET = 'reset'

	Reset all of the motor parameter attributes to their default value.
This will also have the effect of stopping the motor.

	
COMMAND_RUN_DIRECT = 'run-direct'

	Run the motor at the duty cycle specified by duty_cycle_sp.
Unlike other run commands, changing duty_cycle_sp while running will
take effect immediately.

	
COMMAND_RUN_FOREVER = 'run-forever'

	Run the motor until another command is sent.

	
COMMAND_RUN_TIMED = 'run-timed'

	Run the motor for the amount of time specified in time_sp
and then stop the motor using the action specified by stop_action.

	
COMMAND_RUN_TO_ABS_POS = 'run-to-abs-pos'

	Run to an absolute position specified by position_sp and then
stop using the action specified in stop_action.

	
COMMAND_RUN_TO_REL_POS = 'run-to-rel-pos'

	Run to a position relative to the current position value.
The new position will be current position + position_sp.
When the new position is reached, the motor will stop using
the action specified by stop_action.

	
COMMAND_STOP = 'stop'

	Stop any of the run commands before they are complete using the
action specified by stop_action.

	
ENCODER_POLARITY_INVERSED = 'inversed'

	Sets the inversed polarity of the rotary encoder.

	
ENCODER_POLARITY_NORMAL = 'normal'

	Sets the normal polarity of the rotary encoder.

	
POLARITY_INVERSED = 'inversed'

	With inversed polarity, a positive duty cycle will
cause the motor to rotate counter-clockwise.

	
POLARITY_NORMAL = 'normal'

	With normal polarity, a positive duty cycle will
cause the motor to rotate clockwise.

	
STATE_HOLDING = 'holding'

	The motor is not turning, but rather attempting to hold a fixed position.

	
STATE_OVERLOADED = 'overloaded'

	The motor is turning, but cannot reach its speed_sp.

	
STATE_RAMPING = 'ramping'

	The motor is ramping up or down and has not yet reached a constant output level.

	
STATE_RUNNING = 'running'

	Power is being sent to the motor.

	
STATE_STALLED = 'stalled'

	The motor is not turning when it should be.

	
STOP_ACTION_BRAKE = 'brake'

	Power will be removed from the motor and a passive electrical load will
be placed on the motor. This is usually done by shorting the motor terminals
together. This load will absorb the energy from the rotation of the motors and
cause the motor to stop more quickly than coasting.

	
STOP_ACTION_COAST = 'coast'

	Power will be removed from the motor and it will freely coast to a stop.

	
STOP_ACTION_HOLD = 'hold'

	Does not remove power from the motor. Instead it actively try to hold the motor
at the current position. If an external force tries to turn the motor, the motor
will push back to maintain its position.

	
address

	Returns the name of the port that this motor is connected to.

	
command

	Sends a command to the motor controller. See commands for a list of
possible values.

	
commands

	Returns a list of commands that are supported by the motor
controller. Possible values are run-forever, run-to-abs-pos, run-to-rel-pos,
run-timed, run-direct, stop and reset. Not all commands may be supported.

	run-forever will cause the motor to run until another command is sent.

	run-to-abs-pos will run to an absolute position specified by position_sp
and then stop using the action specified in stop_action.

	run-to-rel-pos will run to a position relative to the current position value.
The new position will be current position + position_sp. When the new
position is reached, the motor will stop using the action specified by stop_action.

	run-timed will run the motor for the amount of time specified in time_sp
and then stop the motor using the action specified by stop_action.

	run-direct will run the motor at the duty cycle specified by duty_cycle_sp.
Unlike other run commands, changing duty_cycle_sp while running will
take effect immediately.

	stop will stop any of the run commands before they are complete using the
action specified by stop_action.

	reset will reset all of the motor parameter attributes to their default value.
This will also have the effect of stopping the motor.

	
count_per_m

	Returns the number of tacho counts in one meter of travel of the motor. Tacho
counts are used by the position and speed attributes, so you can use this
value to convert from distance to tacho counts. (linear motors only)

	
count_per_rot

	Returns the number of tacho counts in one rotation of the motor. Tacho counts
are used by the position and speed attributes, so you can use this value
to convert rotations or degrees to tacho counts. (rotation motors only)

	
driver_name

	Returns the name of the driver that provides this tacho motor device.

	
duty_cycle

	Returns the current duty cycle of the motor. Units are percent. Values
are -100 to 100.

	
duty_cycle_sp

	Writing sets the duty cycle setpoint. Reading returns the current value.
Units are in percent. Valid values are -100 to 100. A negative value causes
the motor to rotate in reverse.

	
full_travel_count

	Returns the number of tacho counts in the full travel of the motor. When
combined with the count_per_m atribute, you can use this value to
calculate the maximum travel distance of the motor. (linear motors only)

	
is_holding

	The motor is not turning, but rather attempting to hold a fixed position.

	
is_overloaded

	The motor is turning, but cannot reach its speed_sp.

	
is_ramping

	The motor is ramping up or down and has not yet reached a constant output level.

	
is_running

	Power is being sent to the motor.

	
is_stalled

	The motor is not turning when it should be.

	
max_speed

	Returns the maximum value that is accepted by the speed_sp attribute. This
may be slightly different than the maximum speed that a particular motor can
reach - it’s the maximum theoretical speed.

	
polarity

	Sets the polarity of the motor. With normal polarity, a positive duty
cycle will cause the motor to rotate clockwise. With inversed polarity,
a positive duty cycle will cause the motor to rotate counter-clockwise.
Valid values are normal and inversed.

	
position

	Returns the current position of the motor in pulses of the rotary
encoder. When the motor rotates clockwise, the position will increase.
Likewise, rotating counter-clockwise causes the position to decrease.
Writing will set the position to that value.

	
position_d

	The derivative constant for the position PID.

	
position_i

	The integral constant for the position PID.

	
position_p

	The proportional constant for the position PID.

	
position_sp

	Writing specifies the target position for the run-to-abs-pos and run-to-rel-pos
commands. Reading returns the current value. Units are in tacho counts. You
can use the value returned by counts_per_rot to convert tacho counts to/from
rotations or degrees.

	
ramp_down_sp

	Writing sets the ramp down setpoint. Reading returns the current value. Units
are in milliseconds and must be positive. When set to a non-zero value, the
motor speed will decrease from 0 to 100% of max_speed over the span of this
setpoint. The actual ramp time is the ratio of the difference between the
speed_sp and the current speed and max_speed multiplied by ramp_down_sp.

	
ramp_up_sp

	Writing sets the ramp up setpoint. Reading returns the current value. Units
are in milliseconds and must be positive. When set to a non-zero value, the
motor speed will increase from 0 to 100% of max_speed over the span of this
setpoint. The actual ramp time is the ratio of the difference between the
speed_sp and the current speed and max_speed multiplied by ramp_up_sp.

	
reset(**kwargs)

	Reset all of the motor parameter attributes to their default value.
This will also have the effect of stopping the motor.

	
run_direct(**kwargs)

	Run the motor at the duty cycle specified by duty_cycle_sp.
Unlike other run commands, changing duty_cycle_sp while running will
take effect immediately.

	
run_forever(**kwargs)

	Run the motor until another command is sent.

	
run_timed(**kwargs)

	Run the motor for the amount of time specified in time_sp
and then stop the motor using the action specified by stop_action.

	
run_to_abs_pos(**kwargs)

	Run to an absolute position specified by position_sp and then
stop using the action specified in stop_action.

	
run_to_rel_pos(**kwargs)

	Run to a position relative to the current position value.
The new position will be current position + position_sp.
When the new position is reached, the motor will stop using
the action specified by stop_action.

	
speed

	Returns the current motor speed in tacho counts per second. Note, this is
not necessarily degrees (although it is for LEGO motors). Use the count_per_rot
attribute to convert this value to RPM or deg/sec.

	
speed_d

	The derivative constant for the speed regulation PID.

	
speed_i

	The integral constant for the speed regulation PID.

	
speed_p

	The proportional constant for the speed regulation PID.

	
speed_sp

	Writing sets the target speed in tacho counts per second used for all run-*
commands except run-direct. Reading returns the current value. A negative
value causes the motor to rotate in reverse with the exception of run-to-*-pos
commands where the sign is ignored. Use the count_per_rot attribute to convert
RPM or deg/sec to tacho counts per second. Use the count_per_m attribute to
convert m/s to tacho counts per second.

	
state

	Reading returns a list of state flags. Possible flags are
running, ramping, holding, overloaded and stalled.

	
stop(**kwargs)

	Stop any of the run commands before they are complete using the
action specified by stop_action.

	
stop_action

	Reading returns the current stop action. Writing sets the stop action.
The value determines the motors behavior when command is set to stop.
Also, it determines the motors behavior when a run command completes. See
stop_actions for a list of possible values.

	
stop_actions

	Returns a list of stop actions supported by the motor controller.
Possible values are coast, brake and hold. coast means that power will
be removed from the motor and it will freely coast to a stop. brake means
that power will be removed from the motor and a passive electrical load will
be placed on the motor. This is usually done by shorting the motor terminals
together. This load will absorb the energy from the rotation of the motors and
cause the motor to stop more quickly than coasting. hold does not remove
power from the motor. Instead it actively tries to hold the motor at the current
position. If an external force tries to turn the motor, the motor will ‘push
back’ to maintain its position.

	
time_sp

	Writing specifies the amount of time the motor will run when using the
run-timed command. Reading returns the current value. Units are in
milliseconds.

	
wait(cond, timeout=None)

	Blocks until cond(self.state) is True. The condition is
checked when there is an I/O event related to the state attribute.
Exits early when timeout (in milliseconds) is reached.

Returns True if the condition is met, and False if the timeout
is reached.

	
wait_until(s, timeout=None)

	Blocks until s is in self.state. The condition is checked when
there is an I/O event related to the state attribute. Exits early
when timeout (in milliseconds) is reached.

Returns True if the condition is met, and False if the timeout
is reached.

Example:

m.wait_until('stalled')

	
wait_until_not_moving(timeout=None)

	Blocks until running is not in self.state or stalled is in
self.state. The condition is checked when there is an I/O event
related to the state attribute. Exits early when timeout
(in milliseconds) is reached.

Returns True if the condition is met, and False if the timeout
is reached.

Example:

m.wait_until_not_moving()

	
wait_while(s, timeout=None)

	Blocks until s is not in self.state. The condition is checked
when there is an I/O event related to the state attribute. Exits
early when timeout (in milliseconds) is reached.

Returns True if the condition is met, and False if the timeout
is reached.

Example:

m.wait_while('running')

Large EV3 Motor

	
class ev3dev.core.LargeMotor(address=None, name_pattern='*', name_exact=False, **kwargs)

	Bases: ev3dev.core.Motor

EV3/NXT large servo motor

Medium EV3 Motor

	
class ev3dev.core.MediumMotor(address=None, name_pattern='*', name_exact=False, **kwargs)

	Bases: ev3dev.core.Motor

EV3 medium servo motor

DC Motor

	
class ev3dev.core.DcMotor(address=None, name_pattern='motor*', name_exact=False, **kwargs)

	The DC motor class provides a uniform interface for using regular DC motors
with no fancy controls or feedback. This includes LEGO MINDSTORMS RCX motors
and LEGO Power Functions motors.

	
COMMAND_RUN_DIRECT = 'run-direct'

	Run the motor at the duty cycle specified by duty_cycle_sp.
Unlike other run commands, changing duty_cycle_sp while running will
take effect immediately.

	
COMMAND_RUN_FOREVER = 'run-forever'

	Run the motor until another command is sent.

	
COMMAND_RUN_TIMED = 'run-timed'

	Run the motor for the amount of time specified in time_sp
and then stop the motor using the action specified by stop_action.

	
COMMAND_STOP = 'stop'

	Stop any of the run commands before they are complete using the
action specified by stop_action.

	
POLARITY_INVERSED = 'inversed'

	With inversed polarity, a positive duty cycle will
cause the motor to rotate counter-clockwise.

	
POLARITY_NORMAL = 'normal'

	With normal polarity, a positive duty cycle will
cause the motor to rotate clockwise.

	
STOP_ACTION_BRAKE = 'brake'

	Power will be removed from the motor and a passive electrical load will
be placed on the motor. This is usually done by shorting the motor terminals
together. This load will absorb the energy from the rotation of the motors and
cause the motor to stop more quickly than coasting.

	
STOP_ACTION_COAST = 'coast'

	Power will be removed from the motor and it will freely coast to a stop.

	
address

	Returns the name of the port that this motor is connected to.

	
command

	Sets the command for the motor. Possible values are run-forever, run-timed and
stop. Not all commands may be supported, so be sure to check the contents
of the commands attribute.

	
commands

	Returns a list of commands supported by the motor
controller.

	
driver_name

	Returns the name of the motor driver that loaded this device. See the list
of [supported devices] for a list of drivers.

	
duty_cycle

	Shows the current duty cycle of the PWM signal sent to the motor. Values
are -100 to 100 (-100% to 100%).

	
duty_cycle_sp

	Writing sets the duty cycle setpoint of the PWM signal sent to the motor.
Valid values are -100 to 100 (-100% to 100%). Reading returns the current
setpoint.

	
polarity

	Sets the polarity of the motor. Valid values are normal and inversed.

	
ramp_down_sp

	Sets the time in milliseconds that it take the motor to ramp down from 100%
to 0%. Valid values are 0 to 10000 (10 seconds). Default is 0.

	
ramp_up_sp

	Sets the time in milliseconds that it take the motor to up ramp from 0% to
100%. Valid values are 0 to 10000 (10 seconds). Default is 0.

	
run_direct(**kwargs)

	Run the motor at the duty cycle specified by duty_cycle_sp.
Unlike other run commands, changing duty_cycle_sp while running will
take effect immediately.

	
run_forever(**kwargs)

	Run the motor until another command is sent.

	
run_timed(**kwargs)

	Run the motor for the amount of time specified in time_sp
and then stop the motor using the action specified by stop_action.

	
state

	Gets a list of flags indicating the motor status. Possible
flags are running and ramping. running indicates that the motor is
powered. ramping indicates that the motor has not yet reached the
duty_cycle_sp.

	
stop(**kwargs)

	Stop any of the run commands before they are complete using the
action specified by stop_action.

	
stop_action

	Sets the stop action that will be used when the motor stops. Read
stop_actions to get the list of valid values.

	
stop_actions

	Gets a list of stop actions. Valid values are coast
and brake.

	
time_sp

	Writing specifies the amount of time the motor will run when using the
run-timed command. Reading returns the current value. Units are in
milliseconds.

Servo Motor

	
class ev3dev.core.ServoMotor(address=None, name_pattern='motor*', name_exact=False, **kwargs)

	The servo motor class provides a uniform interface for using hobby type
servo motors.

	
COMMAND_FLOAT = 'float'

	Remove power from the motor.

	
COMMAND_RUN = 'run'

	Drive servo to the position set in the position_sp attribute.

	
POLARITY_INVERSED = 'inversed'

	With inversed polarity, a positive duty cycle will
cause the motor to rotate counter-clockwise.

	
POLARITY_NORMAL = 'normal'

	With normal polarity, a positive duty cycle will
cause the motor to rotate clockwise.

	
address

	Returns the name of the port that this motor is connected to.

	
command

	Sets the command for the servo. Valid values are run and float. Setting
to run will cause the servo to be driven to the position_sp set in the
position_sp attribute. Setting to float will remove power from the motor.

	
driver_name

	Returns the name of the motor driver that loaded this device. See the list
of [supported devices] for a list of drivers.

	
float(**kwargs)

	Remove power from the motor.

	
max_pulse_sp

	Used to set the pulse size in milliseconds for the signal that tells the
servo to drive to the maximum (clockwise) position_sp. Default value is 2400.
Valid values are 2300 to 2700. You must write to the position_sp attribute for
changes to this attribute to take effect.

	
mid_pulse_sp

	Used to set the pulse size in milliseconds for the signal that tells the
servo to drive to the mid position_sp. Default value is 1500. Valid
values are 1300 to 1700. For example, on a 180 degree servo, this would be
90 degrees. On continuous rotation servo, this is the ‘neutral’ position_sp
where the motor does not turn. You must write to the position_sp attribute for
changes to this attribute to take effect.

	
min_pulse_sp

	Used to set the pulse size in milliseconds for the signal that tells the
servo to drive to the miniumum (counter-clockwise) position_sp. Default value
is 600. Valid values are 300 to 700. You must write to the position_sp
attribute for changes to this attribute to take effect.

	
polarity

	Sets the polarity of the servo. Valid values are normal and inversed.
Setting the value to inversed will cause the position_sp value to be
inversed. i.e -100 will correspond to max_pulse_sp, and 100 will
correspond to min_pulse_sp.

	
position_sp

	Reading returns the current position_sp of the servo. Writing instructs the
servo to move to the specified position_sp. Units are percent. Valid values
are -100 to 100 (-100% to 100%) where -100 corresponds to min_pulse_sp,
0 corresponds to mid_pulse_sp and 100 corresponds to max_pulse_sp.

	
rate_sp

	Sets the rate_sp at which the servo travels from 0 to 100.0% (half of the full
range of the servo). Units are in milliseconds. Example: Setting the rate_sp
to 1000 means that it will take a 180 degree servo 2 second to move from 0
to 180 degrees. Note: Some servo controllers may not support this in which
case reading and writing will fail with -EOPNOTSUPP. In continuous rotation
servos, this value will affect the rate_sp at which the speed ramps up or down.

	
run(**kwargs)

	Drive servo to the position set in the position_sp attribute.

	
state

	Returns a list of flags indicating the state of the servo.
Possible values are:
* running: Indicates that the motor is powered.

Sensor classes

Sensor

This is the base class all the other sensor classes are derived from.

	
class ev3dev.core.Sensor(address=None, name_pattern='sensor*', name_exact=False, **kwargs)

	The sensor class provides a uniform interface for using most of the
sensors available for the EV3. The various underlying device drivers will
create a lego-sensor device for interacting with the sensors.

Sensors are primarily controlled by setting the mode and monitored by
reading the value<N> attributes. Values can be converted to floating point
if needed by value<N> / 10.0 ^ decimals.

Since the name of the sensor<N> device node does not correspond to the port
that a sensor is plugged in to, you must look at the address attribute if
you need to know which port a sensor is plugged in to. However, if you don’t
have more than one sensor of each type, you can just look for a matching
driver_name. Then it will not matter which port a sensor is plugged in to - your
program will still work.

	
address

	Returns the name of the port that the sensor is connected to, e.g. ev3:in1.
I2C sensors also include the I2C address (decimal), e.g. ev3:in1:i2c8.

	
bin_data(fmt=None)

	Returns the unscaled raw values in the value<N> attributes as raw byte
array. Use bin_data_format, num_values and the individual sensor
documentation to determine how to interpret the data.

Use fmt to unpack the raw bytes into a struct.

Example:

>>> from ev3dev import *
>>> ir = InfraredSensor()
>>> ir.value()
28
>>> ir.bin_data('<b')
(28,)

	
bin_data_format

	Returns the format of the values in bin_data for the current mode.
Possible values are:

	u8: Unsigned 8-bit integer (byte)

	s8: Signed 8-bit integer (sbyte)

	u16: Unsigned 16-bit integer (ushort)

	s16: Signed 16-bit integer (short)

	s16_be: Signed 16-bit integer, big endian

	s32: Signed 32-bit integer (int)

	float: IEEE 754 32-bit floating point (float)

	
command

	Sends a command to the sensor.

	
commands

	Returns a list of the valid commands for the sensor.
Returns -EOPNOTSUPP if no commands are supported.

	
decimals

	Returns the number of decimal places for the values in the value<N>
attributes of the current mode.

	
driver_name

	Returns the name of the sensor device/driver. See the list of [supported
sensors] for a complete list of drivers.

	
mode

	Returns the current mode. Writing one of the values returned by modes
sets the sensor to that mode.

	
modes

	Returns a list of the valid modes for the sensor.

	
num_values

	Returns the number of value<N> attributes that will return a valid value
for the current mode.

	
units

	Returns the units of the measured value for the current mode. May return
empty string

	
value(n=0)

	Returns the value or values measured by the sensor. Check num_values to
see how many values there are. Values with N >= num_values will return
an error. The values are fixed point numbers, so check decimals to see
if you need to divide to get the actual value.

Special sensor classes

The classes derive from Sensor and provide helper functions
specific to the corresponding sensor type. Each of the functions makes
sure the sensor is in the required mode and then returns the specified value.

Touch Sensor

	
class ev3dev.core.TouchSensor(address=None, name_pattern='sensor*', name_exact=False, **kwargs)

	Bases: ev3dev.core.Sensor

Touch Sensor

	
MODE_TOUCH = 'TOUCH'

	Button state

	
is_pressed

	A boolean indicating whether the current touch sensor is being
pressed.

Color Sensor

	
class ev3dev.core.ColorSensor(address=None, name_pattern='sensor*', name_exact=False, **kwargs)

	Bases: ev3dev.core.Sensor

LEGO EV3 color sensor.

	
COLOR_BLACK = 1

	Black color.

	
COLOR_BLUE = 2

	Blue color.

	
COLOR_BROWN = 7

	Brown color.

	
COLOR_GREEN = 3

	Green color.

	
COLOR_NOCOLOR = 0

	No color.

	
COLOR_RED = 5

	Red color.

	
COLOR_WHITE = 6

	White color.

	
COLOR_YELLOW = 4

	Yellow color.

	
MODE_COL_AMBIENT = 'COL-AMBIENT'

	Ambient light. Red LEDs off.

	
MODE_COL_COLOR = 'COL-COLOR'

	Color. All LEDs rapidly cycling, appears white.

	
MODE_COL_REFLECT = 'COL-REFLECT'

	Reflected light. Red LED on.

	
MODE_REF_RAW = 'REF-RAW'

	Raw reflected. Red LED on

	
MODE_RGB_RAW = 'RGB-RAW'

	Raw Color Components. All LEDs rapidly cycling, appears white.

	
ambient_light_intensity

	Ambient light intensity. Light on sensor is dimly lit blue.

	
blue

	Blue component of the detected color, in the range 0-1020.

	
color

	
	Color detected by the sensor, categorized by overall value.

	
	0: No color

	1: Black

	2: Blue

	3: Green

	4: Yellow

	5: Red

	6: White

	7: Brown

	
green

	Green component of the detected color, in the range 0-1020.

	
raw

	Red, green, and blue components of the detected color, in the range 0-1020.

	
red

	Red component of the detected color, in the range 0-1020.

	
reflected_light_intensity

	Reflected light intensity as a percentage. Light on sensor is red.

Ultrasonic Sensor

	
class ev3dev.core.UltrasonicSensor(address=None, name_pattern='sensor*', name_exact=False, **kwargs)

	Bases: ev3dev.core.Sensor

LEGO EV3 ultrasonic sensor.

	
MODE_US_DIST_CM = 'US-DIST-CM'

	Continuous measurement in centimeters.

	
MODE_US_DIST_IN = 'US-DIST-IN'

	Continuous measurement in inches.

	
MODE_US_LISTEN = 'US-LISTEN'

	Listen.

	
MODE_US_SI_CM = 'US-SI-CM'

	Single measurement in centimeters.

	
MODE_US_SI_IN = 'US-SI-IN'

	Single measurement in inches.

	
distance_centimeters

	Measurement of the distance detected by the sensor,
in centimeters.

	
distance_inches

	Measurement of the distance detected by the sensor,
in inches.

	
other_sensor_present

	Value indicating whether another ultrasonic sensor could
be heard nearby.

Gyro Sensor

	
class ev3dev.core.GyroSensor(address=None, name_pattern='sensor*', name_exact=False, **kwargs)

	Bases: ev3dev.core.Sensor

LEGO EV3 gyro sensor.

	
MODE_GYRO_ANG = 'GYRO-ANG'

	Angle

	
MODE_GYRO_CAL = 'GYRO-CAL'

	Calibration ???

	
MODE_GYRO_FAS = 'GYRO-FAS'

	Raw sensor value

	
MODE_GYRO_G_A = 'GYRO-G&A'

	Angle and rotational speed

	
MODE_GYRO_RATE = 'GYRO-RATE'

	Rotational speed

	
angle

	The number of degrees that the sensor has been rotated
since it was put into this mode.

	
rate

	The rate at which the sensor is rotating, in degrees/second.

	
rate_and_angle

	Angle (degrees) and Rotational Speed (degrees/second).

Infrared Sensor

	
class ev3dev.core.InfraredSensor(address=None, name_pattern='sensor*', name_exact=False, **kwargs)

	Bases: ev3dev.core.Sensor

LEGO EV3 infrared sensor.

	
MODE_IR_CAL = 'IR-CAL'

	Calibration ???

	
MODE_IR_PROX = 'IR-PROX'

	Proximity

	
MODE_IR_REMOTE = 'IR-REMOTE'

	IR Remote Control

	
MODE_IR_REM_A = 'IR-REM-A'

	IR Remote Control. State of the buttons is coded in binary

	
MODE_IR_SEEK = 'IR-SEEK'

	IR Seeker

	
proximity

	A measurement of the distance between the sensor and the remote,
as a percentage. 100% is approximately 70cm/27in.

Sound Sensor

	
class ev3dev.core.SoundSensor(address=None, name_pattern='sensor*', name_exact=False, **kwargs)

	Bases: ev3dev.core.Sensor

LEGO NXT Sound Sensor

	
MODE_DB = 'DB'

	Sound pressure level. Flat weighting

	
MODE_DBA = 'DBA'

	Sound pressure level. A weighting

	
sound_pressure

	A measurement of the measured sound pressure level, as a
percent. Uses a flat weighting.

	
sound_pressure_low

	A measurement of the measured sound pressure level, as a
percent. Uses A-weighting, which focuses on levels up to 55 dB.

Light Sensor

	
class ev3dev.core.LightSensor(address=None, name_pattern='sensor*', name_exact=False, **kwargs)

	Bases: ev3dev.core.Sensor

LEGO NXT Light Sensor

	
MODE_AMBIENT = 'AMBIENT'

	Ambient light. LED off

	
MODE_REFLECT = 'REFLECT'

	Reflected light. LED on

	
ambient_light_intensity

	A measurement of the ambient light intensity, as a percentage.

	
reflected_light_intensity

	A measurement of the reflected light intensity, as a percentage.

Other classes

Remote Control

	
class ev3dev.core.RemoteControl(sensor=None, channel=1)

	EV3 Remote Controller

Event handlers

These will be called when state of the corresponding button is changed:

	
on_red_up

	

	
on_red_down

	

	
on_blue_up

	

	
on_blue_down

	

	
on_beacon

	

Member functions and properties

	
any()

	Checks if any button is pressed.

	
beacon

	Checks if beacon button is pressed.

	
blue_down

	Checks if blue_down button is pressed.

	
blue_up

	Checks if blue_up button is pressed.

	
buttons_pressed

	Returns list of currently pressed buttons.

	
check_buttons(buttons=[])

	Check if currently pressed buttons exactly match the given list.

	
on_beacon = None

	Handles Beacon events.

	
on_blue_down = None

	Handles Blue Down events.

	
on_blue_up = None

	Handles Blue Up events.

	
static on_change(changed_buttons)

	This handler is called by process() whenever state of any button has
changed since last process() call. changed_buttons is a list of
tuples of changed button names and their states.

	
on_red_down = None

	Handles Red Down events.

	
on_red_up = None

	Handles Red Up events.

	
process()

	Check for currenly pressed buttons. If the new state differs from the
old state, call the appropriate button event handlers.

	
red_down

	Checks if red_down button is pressed.

	
red_up

	Checks if red_up button is pressed.

Beacon Seeker

	
class ev3dev.core.BeaconSeeker(sensor=None, channel=1)

	Seeks EV3 Remote Controller in beacon mode.

	
distance

	Returns distance (0, 100) to the beacon on the given channel.
Returns -128 when beacon is not found.

	
heading

	Returns heading (-25, 25) to the beacon on the given channel.

	
heading_and_distance

	Returns heading and distance to the beacon on the given channel as a
tuple.

Button

	
class ev3dev.ev3.Button

	EV3 Buttons

Event handlers

These will be called when state of the corresponding button is changed:

	
on_up

	

	
on_down

	

	
on_left

	

	
on_right

	

	
on_enter

	

	
on_backspace

	

Member functions and properties

	
any()

	Checks if any button is pressed.

	
backspace

	Check if ‘backspace’ button is pressed.

	
buttons_pressed

	Returns list of names of pressed buttons.

	
check_buttons(buttons=[])

	Check if currently pressed buttons exactly match the given list.

	
down

	Check if ‘down’ button is pressed.

	
enter

	Check if ‘enter’ button is pressed.

	
left

	Check if ‘left’ button is pressed.

	
static on_backspace(state)

	This handler is called by process() whenever state of ‘backspace’ button
has changed since last process() call. state parameter is the new
state of the button.

	
static on_change(changed_buttons)

	This handler is called by process() whenever state of any button has
changed since last process() call. changed_buttons is a list of
tuples of changed button names and their states.

	
static on_down(state)

	This handler is called by process() whenever state of ‘down’ button
has changed since last process() call. state parameter is the new
state of the button.

	
static on_enter(state)

	This handler is called by process() whenever state of ‘enter’ button
has changed since last process() call. state parameter is the new
state of the button.

	
static on_left(state)

	This handler is called by process() whenever state of ‘left’ button
has changed since last process() call. state parameter is the new
state of the button.

	
static on_right(state)

	This handler is called by process() whenever state of ‘right’ button
has changed since last process() call. state parameter is the new
state of the button.

	
static on_up(state)

	This handler is called by process() whenever state of ‘up’ button
has changed since last process() call. state parameter is the new
state of the button.

	
process()

	Check for currenly pressed buttons. If the new state differs from the
old state, call the appropriate button event handlers.

	
right

	Check if ‘right’ button is pressed.

	
up

	Check if ‘up’ button is pressed.

Leds

	
class ev3dev.core.Led(address=None, name_pattern='*', name_exact=False, **kwargs)

	Any device controlled by the generic LED driver.
See https://www.kernel.org/doc/Documentation/leds/leds-class.txt
for more details.

	
brightness

	Sets the brightness level. Possible values are from 0 to max_brightness.

	
brightness_pct

	Returns led brightness as a fraction of max_brightness

	
delay_off

	The timer trigger will periodically change the LED brightness between
0 and the current brightness setting. The off time can
be specified via delay_off attribute in milliseconds.

	
delay_on

	The timer trigger will periodically change the LED brightness between
0 and the current brightness setting. The on time can
be specified via delay_on attribute in milliseconds.

	
max_brightness

	Returns the maximum allowable brightness value.

	
trigger

	Sets the led trigger. A trigger
is a kernel based source of led events. Triggers can either be simple or
complex. A simple trigger isn’t configurable and is designed to slot into
existing subsystems with minimal additional code. Examples are the ide-disk and
nand-disk triggers.

Complex triggers whilst available to all LEDs have LED specific
parameters and work on a per LED basis. The timer trigger is an example.
The timer trigger will periodically change the LED brightness between
0 and the current brightness setting. The on and off time can
be specified via delay_{on,off} attributes in milliseconds.
You can change the brightness value of a LED independently of the timer
trigger. However, if you set the brightness value to 0 it will
also disable the timer trigger.

	
triggers

	Returns a list of available triggers.

	
class ev3dev.ev3.Leds

	The EV3 LEDs.

EV3 platform

Led groups:

	
LEFT

	

	
RIGHT

	

Colors:

	
RED

	

	
GREEN

	

	
AMBER

	

	
ORANGE

	

	
YELLOW

	

BrickPI platform

Led groups:

	
LED1

	

	
LED2

	

Colors:

	
BLUE

	

	
static all_off()

	Turn all leds off

	
static set(group, **kwargs)

	Set attributes for each led in group.

Example:

Leds.set(LEFT, brightness_pct=0.5, trigger='timer')

	
static set_color(group, color, pct=1)

	Sets brigthness of leds in the given group to the values specified in
color tuple. When percentage is specified, brightness of each led is
reduced proportionally.

Example:

Leds.set_color(LEFT, AMBER)

Power Supply

	
class ev3dev.core.PowerSupply(address=None, name_pattern='*', name_exact=False, **kwargs)

	A generic interface to read data from the system’s power_supply class.
Uses the built-in legoev3-battery if none is specified.

	
max_voltage

	

	
measured_amps

	The measured current that the battery is supplying (in amps)

	
measured_current

	The measured current that the battery is supplying (in microamps)

	
measured_voltage

	The measured voltage that the battery is supplying (in microvolts)

	
measured_volts

	The measured voltage that the battery is supplying (in volts)

	
min_voltage

	

	
technology

	

	
type

	

Sound

	
class ev3dev.core.Sound

	Sound-related functions. The class has only static methods and is not
intended for instantiation. It can beep, play wav files, or convert text to
speech.

Note that all methods of the class spawn system processes and return
subprocess.Popen objects. The methods are asynchronous (they return
immediately after child process was spawned, without waiting for its
completion), but you can call wait() on the returned result.

Examples:

Play 'bark.wav', return immediately:
Sound.play('bark.wav')

Introduce yourself, wait for completion:
Sound.speak('Hello, I am Robot').wait()

Play a small song
Sound.play_song((
 ('D4', 'e3'),
 ('D4', 'e3'),
 ('D4', 'e3'),
 ('G4', 'h'),
 ('D5', 'h')
))

	
static beep(args='')

	Call beep command with the provided arguments (if any).
See beep man page [https://linux.die.net/man/1/beep] and google linux beep music [https://www.google.com/search?q=linux+beep+music] for inspiration.

	
static get_volume(channel=None)

	Gets the current sound volume by parsing the output of
amixer get <channel>.
If the channel is not specified, it tries to determine the default one
by running amixer scontrols. If that fails as well, it uses the
Playback channel, as that is the only channel on the EV3.

	
static play(wav_file)

	Play wav file.

	
classmethod play_song(song, tempo=120, delay=50)

	Plays a song provided as a list of tuples containing the note name and its
value using music conventional notation instead of numerical values for frequency
and duration.

It supports symbolic notes (e.g. A4, D#3, Gb5) and durations (e.g. q, h).

For an exhaustive list of accepted note symbols and values, have a look at the _NOTE_FREQUENCIES
and _NOTE_VALUES private dictionaries in the source code.

The value can be suffixed by modifiers:

	a divider introduced by a / to obtain triplets for instance
(e.g. q/3 for a triplet of eight note)

	a multiplier introduced by * (e.g. *1.5 is a dotted note).

Shortcuts exist for common modifiers:

	3 produces a triplet member note. For instance e3 gives a triplet of eight notes,
i.e. 3 eight notes in the duration of a single quarter. You must ensure that 3 triplets
notes are defined in sequence to match the count, otherwise the result will not be the
expected one.

	. produces a dotted note, i.e. which duration is one and a half the base one. Double dots
are not currently supported.

Example:

>>> # A long time ago in a galaxy far,
>>> # far away...
>>> Sound.play_song((
>>> ('D4', 'e3'), # intro anacrouse
>>> ('D4', 'e3'),
>>> ('D4', 'e3'),
>>> ('G4', 'h'), # meas 1
>>> ('D5', 'h'),
>>> ('C5', 'e3'), # meas 2
>>> ('B4', 'e3'),
>>> ('A4', 'e3'),
>>> ('G5', 'h'),
>>> ('D5', 'q'),
>>> ('C5', 'e3'), # meas 3
>>> ('B4', 'e3'),
>>> ('A4', 'e3'),
>>> ('G5', 'h'),
>>> ('D5', 'q'),
>>> ('C5', 'e3'), # meas 4
>>> ('B4', 'e3'),
>>> ('C5', 'e3'),
>>> ('A4', 'h.'),
>>>))

Important

Only 4/4 signature songs are supported with respect to note durations.

	Args:

	song (iterable[tuple(str, str)]): the song
tempo (int): the song tempo, given in quarters per minute
delay (int): delay in ms between notes

	Returns:

	subprocess.Popen: the spawn subprocess

	
static set_volume(pct, channel=None)

	Sets the sound volume to the given percentage [0-100] by calling
amixer -q set <channel> <pct>%.
If the channel is not specified, it tries to determine the default one
by running amixer scontrols. If that fails as well, it uses the
Playback channel, as that is the only channel on the EV3.

	
static speak(text, espeak_opts='-a 200 -s 130')

	Speak the given text aloud.

	
static tone(*args)

	tone(tone_sequence)

Play tone sequence. The tone_sequence parameter is a list of tuples,
where each tuple contains up to three numbers. The first number is
frequency in Hz, the second is duration in milliseconds, and the third
is delay in milliseconds between this and the next tone in the
sequence.

Here is a cheerful example:

Sound.tone([
 (392, 350, 100), (392, 350, 100), (392, 350, 100), (311.1, 250, 100),
 (466.2, 25, 100), (392, 350, 100), (311.1, 250, 100), (466.2, 25, 100),
 (392, 700, 100), (587.32, 350, 100), (587.32, 350, 100),
 (587.32, 350, 100), (622.26, 250, 100), (466.2, 25, 100),
 (369.99, 350, 100), (311.1, 250, 100), (466.2, 25, 100), (392, 700, 100),
 (784, 350, 100), (392, 250, 100), (392, 25, 100), (784, 350, 100),
 (739.98, 250, 100), (698.46, 25, 100), (659.26, 25, 100),
 (622.26, 25, 100), (659.26, 50, 400), (415.3, 25, 200), (554.36, 350, 100),
 (523.25, 250, 100), (493.88, 25, 100), (466.16, 25, 100), (440, 25, 100),
 (466.16, 50, 400), (311.13, 25, 200), (369.99, 350, 100),
 (311.13, 250, 100), (392, 25, 100), (466.16, 350, 100), (392, 250, 100),
 (466.16, 25, 100), (587.32, 700, 100), (784, 350, 100), (392, 250, 100),
 (392, 25, 100), (784, 350, 100), (739.98, 250, 100), (698.46, 25, 100),
 (659.26, 25, 100), (622.26, 25, 100), (659.26, 50, 400), (415.3, 25, 200),
 (554.36, 350, 100), (523.25, 250, 100), (493.88, 25, 100),
 (466.16, 25, 100), (440, 25, 100), (466.16, 50, 400), (311.13, 25, 200),
 (392, 350, 100), (311.13, 250, 100), (466.16, 25, 100),
 (392.00, 300, 150), (311.13, 250, 100), (466.16, 25, 100), (392, 700)
]).wait()

tone(frequency, duration)

Play single tone of given frequency (Hz) and duration (milliseconds).

Screen

	
class ev3dev.core.Screen

	Bases: ev3dev.core.FbMem

A convenience wrapper for the FbMem class.
Provides drawing functions from the python imaging library (PIL).

	
clear()

	Clears the screen

	
draw

	Returns a handle to PIL.ImageDraw.Draw class associated with the screen.

Example:

screen.draw.rectangle((10,10,60,20), fill='black')

	
image

	Returns a handle to PIL.Image class that is backing the screen. This can
be accessed for blitting images to the screen.

Example:

screen.image.paste(picture, (0, 0))

	
shape

	Dimensions of the screen.

	
update()

	Applies pending changes to the screen.
Nothing will be drawn on the screen until this function is called.

	
xres

	Horizontal screen resolution

	
yres

	Vertical screen resolution

Bitmap fonts

The Screen class allows to write text on the LCD using python
imaging library (PIL) interface (see description of the text() method
here [http://pillow.readthedocs.io/en/3.1.x/reference/ImageDraw.html#PIL.ImageDraw.PIL.ImageDraw.Draw.text]).
The ev3dev.fonts module contains bitmap fonts in PIL format that should
look good on a tiny EV3 screen:

import ev3dev.fonts as fonts
screen.draw.text((10,10), 'Hello World!', font=fonts.load('luBS14'))

	
ev3dev.fonts.available()

	Returns list of available font names.

	
ev3dev.fonts.load(name)

	Loads the font specified by name and returns it as an instance of
PIL.ImageFont [http://pillow.readthedocs.io/en/latest/reference/ImageFont.html]
class.

The following image lists all available fonts. The grid lines correspond
to EV3 screen size:

[image: _images/fonts.png]

Lego Port

	
class ev3dev.core.LegoPort(address=None, name_pattern='*', name_exact=False, **kwargs)

	The lego-port class provides an interface for working with input and
output ports that are compatible with LEGO MINDSTORMS RCX/NXT/EV3, LEGO
WeDo and LEGO Power Functions sensors and motors. Supported devices include
the LEGO MINDSTORMS EV3 Intelligent Brick, the LEGO WeDo USB hub and
various sensor multiplexers from 3rd party manufacturers.

Some types of ports may have multiple modes of operation. For example, the
input ports on the EV3 brick can communicate with sensors using UART, I2C
or analog validate signals - but not all at the same time. Therefore there
are multiple modes available to connect to the different types of sensors.

In most cases, ports are able to automatically detect what type of sensor
or motor is connected. In some cases though, this must be manually specified
using the mode and set_device attributes. The mode attribute affects
how the port communicates with the connected device. For example the input
ports on the EV3 brick can communicate using UART, I2C or analog voltages,
but not all at the same time, so the mode must be set to the one that is
appropriate for the connected sensor. The set_device attribute is used to
specify the exact type of sensor that is connected. Note: the mode must be
correctly set before setting the sensor type.

Ports can be found at /sys/class/lego-port/port<N> where <N> is
incremented each time a new port is registered. Note: The number is not
related to the actual port at all - use the address attribute to find
a specific port.

	
address

	Returns the name of the port. See individual driver documentation for
the name that will be returned.

	
driver_name

	Returns the name of the driver that loaded this device. You can find the
complete list of drivers in the [list of port drivers].

	
mode

	Reading returns the currently selected mode. Writing sets the mode.
Generally speaking when the mode changes any sensor or motor devices
associated with the port will be removed new ones loaded, however this
this will depend on the individual driver implementing this class.

	
modes

	Returns a list of the available modes of the port.

	
set_device

	For modes that support it, writing the name of a driver will cause a new
device to be registered for that driver and attached to this port. For
example, since NXT/Analog sensors cannot be auto-detected, you must use
this attribute to load the correct driver. Returns -EOPNOTSUPP if setting a
device is not supported.

	
status

	In most cases, reading status will return the same value as mode. In
cases where there is an auto mode additional values may be returned,
such as no-device or error. See individual port driver documentation
for the full list of possible values.

Working with ev3dev remotely using RPyC

RPyC [http://rpyc.readthedocs.io/] (pronounced as are-pie-see), or Remote Python Call, is a transparent
python library for symmetrical remote procedure calls, clustering and
distributed-computing. RPyC makes use of object-proxying, a technique that
employs python’s dynamic nature, to overcome the physical boundaries between
processes and computers, so that remote objects can be manipulated as if they
were local. Here are simple steps you need to follow in order to install and
use RPyC with ev3dev:

	Install RPyC both on the EV3 and on your desktop PC. For the EV3, enter the
following command at the command prompt (after you connect with SSH [http://www.ev3dev.org/docs/tutorials/connecting-to-ev3dev-with-ssh/]):

sudo easy_install3 rpyc

On the desktop PC, it really depends on your operating system. In case it is
some flavor of linux, you should be able to do

sudo pip3 install rpyc

In case it is Windows, there is a win32 installer on the project’s
sourceforge page [http://sourceforge.net/projects/rpyc/files/main]. Also, have a look at the Download and Install [http://rpyc.readthedocs.io/en/latest/install.html] page
on their site.

	Create file rpyc_server.sh with the following contents on the EV3:

#!/bin/bash
python3 `which rpyc_classic.py`

and make the file executable:

chmod +x rpyc_server.sh

Launch the created file either from SSH session (with
./rpyc_server.sh command), or from brickman. It should output something
like

INFO:SLAVE/18812:server started on [0.0.0.0]:18812

and keep running.

	Now you are ready to connect to the RPyC server from your desktop PC. The
following python script should make a large motor connected to output port
A spin for a second.

import rpyc
conn = rpyc.classic.connect('ev3dev') # host name or IP address of the EV3
ev3 = conn.modules['ev3dev.ev3'] # import ev3dev.ev3 remotely
m = ev3.LargeMotor('outA')
m.run_timed(time_sp=1000, speed_sp=600)

You can run scripts like this from any interactive python environment, like
ipython shell/notebook, spyder, pycharm, etc.

Some advantages of using RPyC with ev3dev are:

	It uses much less resources than running ipython notebook on EV3; RPyC server
is lightweight, and only requires an IP connection to the EV3 once set up (no
ssh required).

	The scripts you are working with are actually stored and edited on your
desktop PC, with your favorite editor/IDE.

	Some robots may need much more computational power than what EV3 can give
you. A notable example is the Rubics cube solver: there is an algorithm that
provides almost optimal solution (in terms of number of cube rotations), but
it takes more RAM than is available on EV3. With RPYC, you could run the
heavy-duty computations on your desktop.

The most obvious disadvantage is latency introduced by network connection.
This may be a show stopper for robots where reaction speed is essential.

Frequently-Asked Questions

My script works when launched as python3 script.py but exits immediately or throws an error when launched from Brickman or as ./script.py

This may occur if your file includes Windows-style line endings, which are often
inserted by editors on Windows. To resolve this issue, open an SSH session and
run the following command, replacing <file> with the name of the Python file
you’re using:

sed -i 's/\r//g' <file>

This will fix it for the copy of the file on the brick, but if you plan to edit
it again from Windows you should configure your editor to use Unix-style endings.
For PyCharm, you can find a guide on doing this here [https://www.jetbrains.com/help/pycharm/2016.2/configuring-line-separators.html].
Most other editors have similar options; there may be an option for it in the
status bar at the bottom of the window or in the menu bar at the top.

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W
 | X
 | Y

A

 	
 	address (ev3dev.core.DcMotor attribute)

 	(ev3dev.core.LegoPort attribute)

 	(ev3dev.core.Motor attribute)

 	(ev3dev.core.Sensor attribute)

 	(ev3dev.core.ServoMotor attribute)

 	all_off() (ev3dev.ev3.Leds static method)

 	
 	ambient_light_intensity (ev3dev.core.ColorSensor attribute)

 	(ev3dev.core.LightSensor attribute)

 	angle (ev3dev.core.GyroSensor attribute)

 	any() (ev3dev.core.RemoteControl method)

 	(ev3dev.ev3.Button method)

 	available() (in module ev3dev.fonts)

B

 	
 	backspace (ev3dev.ev3.Button attribute)

 	beacon (ev3dev.core.RemoteControl attribute)

 	BeaconSeeker (class in ev3dev.core)

 	beep() (ev3dev.core.Sound static method)

 	bin_data() (ev3dev.core.Sensor method)

 	bin_data_format (ev3dev.core.Sensor attribute)

 	blue (ev3dev.core.ColorSensor attribute)

 	blue_down (ev3dev.core.RemoteControl attribute)

 	blue_up (ev3dev.core.RemoteControl attribute)

 	brightness (ev3dev.core.Led attribute)

 	
 	brightness_pct (ev3dev.core.Led attribute)

 	Button (class in ev3dev.ev3)

 	Button.on_backspace (in module ev3dev.ev3)

 	Button.on_down (in module ev3dev.ev3)

 	Button.on_enter (in module ev3dev.ev3)

 	Button.on_left (in module ev3dev.ev3)

 	Button.on_right (in module ev3dev.ev3)

 	Button.on_up (in module ev3dev.ev3)

 	buttons_pressed (ev3dev.core.RemoteControl attribute)

 	(ev3dev.ev3.Button attribute)

C

 	
 	check_buttons() (ev3dev.core.RemoteControl method)

 	(ev3dev.ev3.Button method)

 	clear() (ev3dev.core.Screen method)

 	color (ev3dev.core.ColorSensor attribute)

 	COLOR_BLACK (ev3dev.core.ColorSensor attribute)

 	COLOR_BLUE (ev3dev.core.ColorSensor attribute)

 	COLOR_BROWN (ev3dev.core.ColorSensor attribute)

 	COLOR_GREEN (ev3dev.core.ColorSensor attribute)

 	COLOR_NOCOLOR (ev3dev.core.ColorSensor attribute)

 	COLOR_RED (ev3dev.core.ColorSensor attribute)

 	COLOR_WHITE (ev3dev.core.ColorSensor attribute)

 	COLOR_YELLOW (ev3dev.core.ColorSensor attribute)

 	ColorSensor (class in ev3dev.core)

 	command (ev3dev.core.DcMotor attribute)

 	(ev3dev.core.Motor attribute)

 	(ev3dev.core.Sensor attribute)

 	(ev3dev.core.ServoMotor attribute)

 	
 	COMMAND_FLOAT (ev3dev.core.ServoMotor attribute)

 	COMMAND_RESET (ev3dev.core.Motor attribute)

 	COMMAND_RUN (ev3dev.core.ServoMotor attribute)

 	COMMAND_RUN_DIRECT (ev3dev.core.DcMotor attribute)

 	(ev3dev.core.Motor attribute)

 	COMMAND_RUN_FOREVER (ev3dev.core.DcMotor attribute)

 	(ev3dev.core.Motor attribute)

 	COMMAND_RUN_TIMED (ev3dev.core.DcMotor attribute)

 	(ev3dev.core.Motor attribute)

 	COMMAND_RUN_TO_ABS_POS (ev3dev.core.Motor attribute)

 	COMMAND_RUN_TO_REL_POS (ev3dev.core.Motor attribute)

 	COMMAND_STOP (ev3dev.core.DcMotor attribute)

 	(ev3dev.core.Motor attribute)

 	commands (ev3dev.core.DcMotor attribute)

 	(ev3dev.core.Motor attribute)

 	(ev3dev.core.Sensor attribute)

 	count_per_m (ev3dev.core.Motor attribute)

 	count_per_rot (ev3dev.core.Motor attribute)

D

 	
 	DcMotor (class in ev3dev.core)

 	decimals (ev3dev.core.Sensor attribute)

 	delay_off (ev3dev.core.Led attribute)

 	delay_on (ev3dev.core.Led attribute)

 	Device (class in ev3dev.core)

 	distance (ev3dev.core.BeaconSeeker attribute)

 	distance_centimeters (ev3dev.core.UltrasonicSensor attribute)

 	distance_inches (ev3dev.core.UltrasonicSensor attribute)

 	down (ev3dev.ev3.Button attribute)

 	
 	draw (ev3dev.core.Screen attribute)

 	driver_name (ev3dev.core.DcMotor attribute)

 	(ev3dev.core.LegoPort attribute)

 	(ev3dev.core.Motor attribute)

 	(ev3dev.core.Sensor attribute)

 	(ev3dev.core.ServoMotor attribute)

 	duty_cycle (ev3dev.core.DcMotor attribute)

 	(ev3dev.core.Motor attribute)

 	duty_cycle_sp (ev3dev.core.DcMotor attribute)

 	(ev3dev.core.Motor attribute)

E

 	
 	ENCODER_POLARITY_INVERSED (ev3dev.core.Motor attribute)

 	
 	ENCODER_POLARITY_NORMAL (ev3dev.core.Motor attribute)

 	enter (ev3dev.ev3.Button attribute)

F

 	
 	float() (ev3dev.core.ServoMotor method)

 	
 	full_travel_count (ev3dev.core.Motor attribute)

G

 	
 	get_volume() (ev3dev.core.Sound static method)

 	
 	green (ev3dev.core.ColorSensor attribute)

 	GyroSensor (class in ev3dev.core)

H

 	
 	heading (ev3dev.core.BeaconSeeker attribute)

 	
 	heading_and_distance (ev3dev.core.BeaconSeeker attribute)

I

 	
 	image (ev3dev.core.Screen attribute)

 	InfraredSensor (class in ev3dev.core)

 	is_holding (ev3dev.core.Motor attribute)

 	is_overloaded (ev3dev.core.Motor attribute)

 	
 	is_pressed (ev3dev.core.TouchSensor attribute)

 	is_ramping (ev3dev.core.Motor attribute)

 	is_running (ev3dev.core.Motor attribute)

 	is_stalled (ev3dev.core.Motor attribute)

L

 	
 	LargeMotor (class in ev3dev.core)

 	Led (class in ev3dev.core)

 	Leds (class in ev3dev.ev3)

 	Leds.AMBER (in module ev3dev.ev3)

 	Leds.BLUE (in module ev3dev.ev3)

 	Leds.GREEN (in module ev3dev.ev3)

 	Leds.LED1 (in module ev3dev.ev3)

 	Leds.LED2 (in module ev3dev.ev3)

 	Leds.LEFT (in module ev3dev.ev3)

 	Leds.ORANGE (in module ev3dev.ev3)

 	
 	Leds.RED (in module ev3dev.ev3)

 	Leds.RIGHT (in module ev3dev.ev3)

 	Leds.YELLOW (in module ev3dev.ev3)

 	left (ev3dev.ev3.Button attribute)

 	LegoPort (class in ev3dev.core)

 	LightSensor (class in ev3dev.core)

 	list_device_names() (in module ev3dev.core)

 	list_devices() (in module ev3dev.core)

 	list_motors() (in module ev3dev.core)

 	list_sensors() (in module ev3dev.core)

 	load() (in module ev3dev.fonts)

M

 	
 	max_brightness (ev3dev.core.Led attribute)

 	max_pulse_sp (ev3dev.core.ServoMotor attribute)

 	max_speed (ev3dev.core.Motor attribute)

 	max_voltage (ev3dev.core.PowerSupply attribute)

 	measured_amps (ev3dev.core.PowerSupply attribute)

 	measured_current (ev3dev.core.PowerSupply attribute)

 	measured_voltage (ev3dev.core.PowerSupply attribute)

 	measured_volts (ev3dev.core.PowerSupply attribute)

 	MediumMotor (class in ev3dev.core)

 	mid_pulse_sp (ev3dev.core.ServoMotor attribute)

 	min_pulse_sp (ev3dev.core.ServoMotor attribute)

 	min_voltage (ev3dev.core.PowerSupply attribute)

 	mode (ev3dev.core.LegoPort attribute)

 	(ev3dev.core.Sensor attribute)

 	MODE_AMBIENT (ev3dev.core.LightSensor attribute)

 	MODE_COL_AMBIENT (ev3dev.core.ColorSensor attribute)

 	MODE_COL_COLOR (ev3dev.core.ColorSensor attribute)

 	MODE_COL_REFLECT (ev3dev.core.ColorSensor attribute)

 	MODE_DB (ev3dev.core.SoundSensor attribute)

 	MODE_DBA (ev3dev.core.SoundSensor attribute)

 	MODE_GYRO_ANG (ev3dev.core.GyroSensor attribute)

 	
 	MODE_GYRO_CAL (ev3dev.core.GyroSensor attribute)

 	MODE_GYRO_FAS (ev3dev.core.GyroSensor attribute)

 	MODE_GYRO_G_A (ev3dev.core.GyroSensor attribute)

 	MODE_GYRO_RATE (ev3dev.core.GyroSensor attribute)

 	MODE_IR_CAL (ev3dev.core.InfraredSensor attribute)

 	MODE_IR_PROX (ev3dev.core.InfraredSensor attribute)

 	MODE_IR_REM_A (ev3dev.core.InfraredSensor attribute)

 	MODE_IR_REMOTE (ev3dev.core.InfraredSensor attribute)

 	MODE_IR_SEEK (ev3dev.core.InfraredSensor attribute)

 	MODE_REF_RAW (ev3dev.core.ColorSensor attribute)

 	MODE_REFLECT (ev3dev.core.LightSensor attribute)

 	MODE_RGB_RAW (ev3dev.core.ColorSensor attribute)

 	MODE_TOUCH (ev3dev.core.TouchSensor attribute)

 	MODE_US_DIST_CM (ev3dev.core.UltrasonicSensor attribute)

 	MODE_US_DIST_IN (ev3dev.core.UltrasonicSensor attribute)

 	MODE_US_LISTEN (ev3dev.core.UltrasonicSensor attribute)

 	MODE_US_SI_CM (ev3dev.core.UltrasonicSensor attribute)

 	MODE_US_SI_IN (ev3dev.core.UltrasonicSensor attribute)

 	modes (ev3dev.core.LegoPort attribute)

 	(ev3dev.core.Sensor attribute)

 	Motor (class in ev3dev.core)

N

 	
 	num_values (ev3dev.core.Sensor attribute)

O

 	
 	on_backspace() (ev3dev.ev3.Button static method)

 	on_beacon (ev3dev.core.RemoteControl attribute)

 	on_blue_down (ev3dev.core.RemoteControl attribute)

 	on_blue_up (ev3dev.core.RemoteControl attribute)

 	on_change() (ev3dev.core.RemoteControl static method)

 	(ev3dev.ev3.Button static method)

 	on_down() (ev3dev.ev3.Button static method)

 	
 	on_enter() (ev3dev.ev3.Button static method)

 	on_left() (ev3dev.ev3.Button static method)

 	on_red_down (ev3dev.core.RemoteControl attribute)

 	on_red_up (ev3dev.core.RemoteControl attribute)

 	on_right() (ev3dev.ev3.Button static method)

 	on_up() (ev3dev.ev3.Button static method)

 	other_sensor_present (ev3dev.core.UltrasonicSensor attribute)

P

 	
 	play() (ev3dev.core.Sound static method)

 	play_song() (ev3dev.core.Sound class method)

 	polarity (ev3dev.core.DcMotor attribute)

 	(ev3dev.core.Motor attribute)

 	(ev3dev.core.ServoMotor attribute)

 	POLARITY_INVERSED (ev3dev.core.DcMotor attribute)

 	(ev3dev.core.Motor attribute)

 	(ev3dev.core.ServoMotor attribute)

 	POLARITY_NORMAL (ev3dev.core.DcMotor attribute)

 	(ev3dev.core.Motor attribute)

 	(ev3dev.core.ServoMotor attribute)

 	
 	position (ev3dev.core.Motor attribute)

 	position_d (ev3dev.core.Motor attribute)

 	position_i (ev3dev.core.Motor attribute)

 	position_p (ev3dev.core.Motor attribute)

 	position_sp (ev3dev.core.Motor attribute)

 	(ev3dev.core.ServoMotor attribute)

 	PowerSupply (class in ev3dev.core)

 	process() (ev3dev.core.RemoteControl method)

 	(ev3dev.ev3.Button method)

 	proximity (ev3dev.core.InfraredSensor attribute)

R

 	
 	ramp_down_sp (ev3dev.core.DcMotor attribute)

 	(ev3dev.core.Motor attribute)

 	ramp_up_sp (ev3dev.core.DcMotor attribute)

 	(ev3dev.core.Motor attribute)

 	rate (ev3dev.core.GyroSensor attribute)

 	rate_and_angle (ev3dev.core.GyroSensor attribute)

 	rate_sp (ev3dev.core.ServoMotor attribute)

 	raw (ev3dev.core.ColorSensor attribute)

 	red (ev3dev.core.ColorSensor attribute)

 	red_down (ev3dev.core.RemoteControl attribute)

 	red_up (ev3dev.core.RemoteControl attribute)

 	reflected_light_intensity (ev3dev.core.ColorSensor attribute)

 	(ev3dev.core.LightSensor attribute)

 	RemoteControl (class in ev3dev.core)

 	RemoteControl.on_beacon (in module ev3dev.core)

 	
 	RemoteControl.on_blue_down (in module ev3dev.core)

 	RemoteControl.on_blue_up (in module ev3dev.core)

 	RemoteControl.on_red_down (in module ev3dev.core)

 	RemoteControl.on_red_up (in module ev3dev.core)

 	reset() (ev3dev.core.Motor method)

 	right (ev3dev.ev3.Button attribute)

 	run() (ev3dev.core.ServoMotor method)

 	run_direct() (ev3dev.core.DcMotor method)

 	(ev3dev.core.Motor method)

 	run_forever() (ev3dev.core.DcMotor method)

 	(ev3dev.core.Motor method)

 	run_timed() (ev3dev.core.DcMotor method)

 	(ev3dev.core.Motor method)

 	run_to_abs_pos() (ev3dev.core.Motor method)

 	run_to_rel_pos() (ev3dev.core.Motor method)

S

 	
 	Screen (class in ev3dev.core)

 	Sensor (class in ev3dev.core)

 	ServoMotor (class in ev3dev.core)

 	set() (ev3dev.ev3.Leds static method)

 	set_color() (ev3dev.ev3.Leds static method)

 	set_device (ev3dev.core.LegoPort attribute)

 	set_volume() (ev3dev.core.Sound static method)

 	shape (ev3dev.core.Screen attribute)

 	Sound (class in ev3dev.core)

 	sound_pressure (ev3dev.core.SoundSensor attribute)

 	sound_pressure_low (ev3dev.core.SoundSensor attribute)

 	SoundSensor (class in ev3dev.core)

 	speak() (ev3dev.core.Sound static method)

 	speed (ev3dev.core.Motor attribute)

 	speed_d (ev3dev.core.Motor attribute)

 	speed_i (ev3dev.core.Motor attribute)

 	speed_p (ev3dev.core.Motor attribute)

 	speed_sp (ev3dev.core.Motor attribute)

 	state (ev3dev.core.DcMotor attribute)

 	(ev3dev.core.Motor attribute)

 	(ev3dev.core.ServoMotor attribute)

 	
 	STATE_HOLDING (ev3dev.core.Motor attribute)

 	STATE_OVERLOADED (ev3dev.core.Motor attribute)

 	STATE_RAMPING (ev3dev.core.Motor attribute)

 	STATE_RUNNING (ev3dev.core.Motor attribute)

 	STATE_STALLED (ev3dev.core.Motor attribute)

 	status (ev3dev.core.LegoPort attribute)

 	stop() (ev3dev.core.DcMotor method)

 	(ev3dev.core.Motor method)

 	stop_action (ev3dev.core.DcMotor attribute)

 	(ev3dev.core.Motor attribute)

 	STOP_ACTION_BRAKE (ev3dev.core.DcMotor attribute)

 	(ev3dev.core.Motor attribute)

 	STOP_ACTION_COAST (ev3dev.core.DcMotor attribute)

 	(ev3dev.core.Motor attribute)

 	STOP_ACTION_HOLD (ev3dev.core.Motor attribute)

 	stop_actions (ev3dev.core.DcMotor attribute)

 	(ev3dev.core.Motor attribute)

T

 	
 	technology (ev3dev.core.PowerSupply attribute)

 	time_sp (ev3dev.core.DcMotor attribute)

 	(ev3dev.core.Motor attribute)

 	tone() (ev3dev.core.Sound static method)

 	
 	TouchSensor (class in ev3dev.core)

 	trigger (ev3dev.core.Led attribute)

 	triggers (ev3dev.core.Led attribute)

 	type (ev3dev.core.PowerSupply attribute)

U

 	
 	UltrasonicSensor (class in ev3dev.core)

 	units (ev3dev.core.Sensor attribute)

 	
 	up (ev3dev.ev3.Button attribute)

 	update() (ev3dev.core.Screen method)

V

 	
 	value() (ev3dev.core.Sensor method)

W

 	
 	wait() (ev3dev.core.Motor method)

 	wait_until() (ev3dev.core.Motor method)

 	
 	wait_until_not_moving() (ev3dev.core.Motor method)

 	wait_while() (ev3dev.core.Motor method)

X

 	
 	xres (ev3dev.core.Screen attribute)

Y

 	
 	yres (ev3dev.core.Screen attribute)

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment.png

_static/file.png

_images/fonts.png
- charB10 charB12 charB14 charB18 ¢HarB24 ™" fharbI10
charBli2 charBIM charBII8 charBI2A” o charit2 hari14

harl18 harldq """ chertto charR12 chatR14 charR1 tharR24
po— cours10 courB12 courBfl4 courBl8 ogurB24- oursato
courBo12 cours014 courBO18 coulrBOIU™” sougpzo courol2 ouro1d
courolf cour®z 4™) courRlz cofrr14 courR18 ourR24
helvpos helvB10 helvB12 helvB1d helvB18 he|v824 delspoos o0
heivBoT2 helvBOTY helvBO18 holyBOZA™ hewdio renore eli014
helvO18 holyOP4 ™™ VA0 helvR1Z helfR14 helvR18 helyR24
rogtsos tsisto uBIS12 1uBIS 14 uBIS18 IuBIS19 [yBIS24!™

TowsTU TWEST TUBSTH TuBSTS TuBST9 [yBS24

stz tuista Is18 wiST9 JuiS24 ™ ursto urs12
IuRS14 IuRS18| |uRS19 |yRY24 ™™ st TubE12 ubB14
ubBIS IwbB19| ubB24 " kB0 mbpniz bBII4 ubBI1§
mbBI19 IubBIP4 ™ nabi10 ebr1z mB{14 ubil8 ubll 9
Rir (s TubRE TubRTe—jubR24——
ks Tutesto Tutesiz Tutesi4 TutBS18 TukBS19 utBS24["™

Tutrsto Tutkst2 TutRS14 TutRE18 TutRS19 TYtRS24™"™ oenB10
neenBi2 noenBld| neenBI8 ncenB2A™ neoldll0 noonBl2 cenBl14
neenBI18 peenBIST” neent10 neenl’2 neepl1d ncenl18 cenl24
acenhti noenR10 ncenR12 ncenR]4 R1 ndenR24 o rwhio

oyupl2 oyuple oyupls oy 24 Feftiae FHiB14 termid ernBla
inate tinB10 mB12 timB14| timB18 timB24 “" g

dmBH2 timbBI14 timBI18 timBI24 i cimii2 mi14
amil3 timi24) " = ez 4 timR18 imR24

_static/fonts.png
- charB10 charB12 charB14 charB18 ¢HarB24 ™" fharbI10
charBli2 charBIM charBII8 charBI2A” o charit2 hari14

harl18 harldq """ chertto charR12 chatR14 charR1 tharR24
po— cours10 courB12 courBfl4 courBl8 ogurB24- oursato
courBo12 cours014 courBO18 coulrBOIU™” sougpzo courol2 ouro1d
courolf cour®z 4™) courRlz cofrr14 courR18 ourR24
helvpos helvB10 helvB12 helvB1d helvB18 he|v824 delspoos o0
heivBoT2 helvBOTY helvBO18 holyBOZA™ hewdio renore eli014
helvO18 holyOP4 ™™ VA0 helvR1Z helfR14 helvR18 helyR24
rogtsos tsisto uBIS12 1uBIS 14 uBIS18 IuBIS19 [yBIS24!™

TowsTU TWEST TUBSTH TuBSTS TuBST9 [yBS24

stz tuista Is18 wiST9 JuiS24 ™ ursto urs12
IuRS14 IuRS18| |uRS19 |yRY24 ™™ st TubE12 ubB14
ubBIS IwbB19| ubB24 " kB0 mbpniz bBII4 ubBI1§
mbBI19 IubBIP4 ™ nabi10 ebr1z mB{14 ubil8 ubll 9
Rir (s TubRE TubRTe—jubR24——
ks Tutesto Tutesiz Tutesi4 TutBS18 TukBS19 utBS24["™

Tutrsto Tutkst2 TutRS14 TutRE18 TutRS19 TYtRS24™"™ oenB10
neenBi2 noenBld| neenBI8 ncenB2A™ neoldll0 noonBl2 cenBl14
neenBI18 peenBIST” neent10 neenl’2 neepl1d ncenl18 cenl24
acenhti noenR10 ncenR12 ncenR]4 R1 ndenR24 o rwhio

oyupl2 oyuple oyupls oy 24 Feftiae FHiB14 termid ernBla
inate tinB10 mB12 timB14| timB18 timB24 “" g

dmBH2 timbBI14 timBI18 timBI24 i cimii2 mi14
amil3 timi24) " = ez 4 timR18 imR24

nav.xhtml

 Table of Contents

 		
 Python language bindings for ev3dev

 		
 API reference

 		
 Motor classes

 		
 Tacho motor

 		
 Large EV3 Motor

 		
 Medium EV3 Motor

 		
 DC Motor

 		
 Servo Motor

 		
 Sensor classes

 		
 Sensor

 		
 Special sensor classes

 		
 Other classes

 		
 Remote Control

 		
 Beacon Seeker

 		
 Button

 		
 Leds

 		
 Power Supply

 		
 Sound

 		
 Screen

 		
 Lego Port

 		
 Working with ev3dev remotely using RPyC

 		
 Frequently-Asked Questions

 		
 My script works when launched as python3 script.py but exits immediately or throws an error when launched from Brickman or as ./script.py

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

