

Python language bindings for ev3dev

[image: _images/ev3dev-lang-python.svg]
 [https://travis-ci.org/ev3dev/ev3dev-lang-python][image: Documentation Status]
 [http://python-ev3dev.readthedocs.org/en/ev3dev-stretch/?badge=ev3dev-stretch][image: Chat at https://gitter.im/ev3dev/chat]
A Python3 library implementing an interface for ev3dev [http://ev3dev.org] devices,
letting you control motors, sensors, hardware buttons, LCD
displays and more from Python code.

If you haven’t written code in Python before, you can certainly use this
library to help you learn the language!

Getting Started

This library runs on ev3dev [http://ev3dev.org]. Before continuing, make sure that you have set up
your EV3 or other ev3dev device as explained in the
ev3dev Getting Started guide [http://www.ev3dev.org/docs/getting-started/]. Make sure you have an ev3dev-stretch version
greater than 2.2.0. You can check the kernel version by selecting
“About” in Brickman and scrolling down to the “kernel version”.
If you don’t have a compatible version,
upgrade the kernel before continuing [http://www.ev3dev.org/docs/tutorials/upgrading-ev3dev/].

Usage

To start out, you’ll need a way to work with Python. We recommend the
ev3dev Visual Studio Code extension [https://github.com/ev3dev/vscode-ev3dev-browser]. If you’re interested in using that,
check out our Python + VSCode introduction tutorial [https://github.com/ev3dev/vscode-hello-python] and then come back
once you have that set up.

Otherwise, you can can work with files via an SSH connection [http://www.ev3dev.org/docs/tutorials/connecting-to-ev3dev-with-ssh/] with an editor
such as nano [http://www.ev3dev.org/docs/tutorials/nano-cheat-sheet/], use the Python interactive REPL (type python3), or roll
your own solution. If you don’t know how to do that, you are probably
better off choosing the recommended option above.

The template for a Python script

Every Python program should have a few basic parts. Use this template
to get started:

#!/usr/bin/env python3
from ev3dev2.motor import LargeMotor, OUTPUT_A, OUTPUT_B, SpeedPercent, MoveTank
from ev3dev2.sensor import INPUT_1
from ev3dev2.sensor.lego import TouchSensor
from ev3dev2.led import Leds

TODO: Add code here

The first line should be included in every Python program you write
for ev3dev. It allows you to run this program from Brickman, the graphical
menu that you see on the device screen. The other lines are import statements
which give you access to the library functionality. You will need to add
additional classes to the import list if you want to use other types of devices
or additional utilities.

You should use the .py extension for your file, e.g. my-file.py.

If you encounter an error such as
/usr/bin/env: 'python3\r': No such file or directory,
you must switch your editor’s “line endings” setting for the file from
“CRLF” to just “LF”. This is usually in the status bar at the bottom.
For help, see our FAQ page [http://python-ev3dev.readthedocs.io/en/ev3dev-stretch/faq.html].

Important: Make your script executable (non-Visual Studio Code only)

To be able to run your Python file, your program must be executable. If
you are using the ev3dev Visual Studio Code extension [https://github.com/ev3dev/vscode-ev3dev-browser], you can skip this
step, as it will be automatically performed when you download your code to the
brick.

To mark a program as executable from the command line (often an SSH session),
run chmod +x my-file.py.

You can now run my-file.py via the Brickman File Browser or you can run it
from the command line by preceding the file name with ./: ./my-file.py

Controlling the LEDs with a touch sensor

This code will turn the LEDs red whenever the touch sensor is pressed, and
back to green when it’s released. Plug a touch sensor into any sensor port
before trying this out.

ts = TouchSensor()
leds = Leds()

print("Press the touch sensor to change the LED color!")

while True:
 if ts.is_pressed:
 leds.set_color("LEFT", "GREEN")
 leds.set_color("RIGHT", "GREEN")
 else:
 leds.set_color("LEFT", "RED")
 leds.set_color("RIGHT", "RED")

If you’d like to use a sensor on a specific port, specify the port like this:

ts = TouchSensor(INPUT_1)

Running a single motor

This will run a LEGO Large Motor at 75% of maximum speed for 5 rotations.

m = LargeMotor(OUTPUT_A)
m.on_for_rotations(SpeedPercent(75), 5)

You can also run a motor for a number of degrees, an amount of time, or simply
start it and let it run until you tell it to stop. Additionally, other units
are also available. See the following pages for more information:

	http://python-ev3dev.readthedocs.io/en/ev3dev-stretch/motors.html#ev3dev.motor.Motor.on_for_degrees

	http://python-ev3dev.readthedocs.io/en/ev3dev-stretch/motors.html#units

Driving with two motors

The simplest drive control style is with the MoveTank class:

tank_drive = MoveTank(OUTPUT_A, OUTPUT_B)

drive in a turn for 5 rotations of the outer motor
the first two parameters can be unit classes or percentages.
tank_drive.on_for_rotations(SpeedPercent(50), SpeedPercent(75), 10)

drive in a different turn for 3 seconds
tank_drive.on_for_seconds(SpeedPercent(60), SpeedPercent(30), 3)

There are also MoveSteering and MoveJoystick classes which provide
different styles of control. See the following pages for more information:

	http://python-ev3dev.readthedocs.io/en/ev3dev-stretch/motors.html#multiple-motor-groups

	http://python-ev3dev.readthedocs.io/en/ev3dev-stretch/motors.html#units

Using text-to-speech

If you want to make your robot speak, you can use the Sound.speak method:

from ev3dev2.sound import Sound

sound = Sound()
sound.speak('Welcome to the E V 3 dev project!')

More Demo Code

There are several demo programs that you can run to get acquainted with
this language binding. The programs are available
at this GitHub site [https://github.com/ev3dev/ev3dev-lang-python-demo].

You can also copy and run the programs in the utils directory to
understand some of the code constructs to use the EV3 motors, sensors,
LCD console, buttons, sound, and LEDs.

We also highly recommend ev3python.com [http://ev3python.com/] where one of our community
members, @ndward, has put together a great website with detailed guides
on using this library which are targeted at beginners. If you are just
getting started with programming, we highly recommend that you check
it out at ev3python.com [http://ev3python.com/]!

Using Micropython

Normal Python too slow? Review Micropython [http://python-ev3dev.readthedocs.io/en/ev3dev-stretch/micropython.html] to see if it supports the
features your project needs.

Library Documentation

Class documentation for this library can be found on
our Read the Docs page [http://python-ev3dev.readthedocs.org/en/ev3dev-stretch/]. You can always go there to get
information on how you can use this library’s functionality.

Frequently-Asked Questions

Experiencing an odd error or unsure of how to do something that seems
simple? Check our our FAQ [http://python-ev3dev.readthedocs.io/en/ev3dev-stretch/faq.html] to see if there’s an existing answer.

Contents

	Using python-ev3dev with MicroPython
	Module support

	Differences from standard Python (CPython)
	Shebang

	Running from the command line

	Upgrading from ev3dev-jessie (library v1) to ev3dev-stretch (library v2)
	Updating import statements

	Remove references to connected attribute

	Screen class has been renamed to Display

	Reorganization of RemoteControl, BeaconSeeker and InfraredSensor

	Re-designed Sound class

	Once you’ve adapted to breaking changes, check out the cool new features!

	API reference
	Device interfaces
	Motor classes

	Sensor classes

	Button

	Leds

	Power Supply

	Sound

	Display

	Console

	Lego Port

	Port names

	Wheels

	Other APIs

	Working with ev3dev remotely using RPyC

	Frequently-Asked Questions

Using python-ev3dev with MicroPython

The core modules of this library are shipped as a module for MicroPython [https://micropython.org/],
which is faster to load and run on the EV3. If your app only requires functionality supported on
MicroPython, we recommend you run your code with it for improved performance.

Module support

	Module

	Support status

	ev3dev2.button

	️️✔️

	ev3dev2.console

	✔️️

	ev3dev2.control 1

	⚠️

	ev3dev2.display 2

	❌

	ev3dev2.fonts 3

	❌

	ev3dev2.led

	✔️

	ev3dev2.motor

	✔️

	ev3dev2.port

	✔️

	ev3dev2.power

	✔️

	ev3dev2.sensor.*

	✔️

	ev3dev2.sound

	✔️

	ev3dev2.unit

	✔️

	ev3dev2.wheel

	✔️

	1

	Untested/low-priority, but some of it might work.

	2

	ev3dev2.display isn’t implemented. Use ev3dev2.console for text-only, using ANSI codes to the EV3 LCD console.

	3

	ev3dev2.console supports the system fonts, but the fonts for ev3dev2.display do not work.

Differences from standard Python (CPython)

See the MicroPython differences page [http://docs.micropython.org/en/latest/genrst/index.html] for language information.

Shebang

You should modify the first line of your scripts to replace “python3” with “micropython”:

#!/usr/bin/env micropython

Running from the command line

If you previously would have typed python3 foo.py, you should now type micropython foo.py.

If you are running programs via an SSH shell to your EV3, use the following command line to
prevent Brickman from interfering:

brickrun -- ./program.py

Upgrading from ev3dev-jessie (library v1) to ev3dev-stretch (library v2)

With ev3dev-stretch, we have introduced some breaking changes that you must be aware of to get older scripts running with new features.

Scripts which worked on ev3dev-jessie are still supported and will continue to work as-is on Stretch. However, if you want to use any of the new features we have introduced, you will need to switch to using version 2 of the python-ev3dev library. You can switch to version 2 by updating your import statements.

Updating import statements

Previously, we recommended using one of the following as your import declaration:

import ev3dev.ev3 as ev3
import ev3dev.brickpi as ev3
import ev3dev.auto as ev3

We have re-arranged the library to provide more control over what gets imported. For all platforms, you will now import from individual modules for things like sensors and motors, like this:

from ev3dev2.motor import Motor, OUTPUT_A
from ev3dev2.sensor.lego import TouchSensor, UltrasonicSensor

The platform (EV3, BrickPi, etc.) will now be automatically determined.

You can omit import statements for modules you don’t need, and add any additional ones that you do require. With this style of import, members are globally available by their name, so you would now refer to the Motor class as simply Motor rather than ev3.Motor.

Remove references to connected attribute

In version 1 of the library, instantiating a device such as a motor or sensor would always succeed without an error. To see if the device connected successfully you would have to check the connected attribute. With the new version of the module, the constructor of device classes will throw an ev3dev2.DeviceNotConnected exception. You will need to remove any uses of the connected attribute.

Screen class has been renamed to Display

To match the name used by LEGO’s “EV3-G” graphical programming tools, we have renamed the Screen module to Display.

Reorganization of RemoteControl, BeaconSeeker and InfraredSensor

The RemoteControl and BeaconSeeker classes have been removed; you will now use InfraredSensor for all purposes.

Additionally, we have renamed many of the properties on the InfraredSensor class to make the meaning more obvious. Check out the InfraredSensor documentation for more info.

Re-designed Sound class

The names and interfaces of some of the Sound class methods have changed. Check out the Sound class docs for details.

Once you’ve adapted to breaking changes, check out the cool new features!

	New classes are available for coordinating motors: ev3dev2.motor.MotorSet, ev3dev2.motor.MoveTank, ev3dev2.motor.MoveSteering, and ev3dev2.motor.MoveJoystick.

	Classes representing a variety of motor speed units are available and accepted by many of the motor interfaces: see Units.

	Friendlier interfaces for operating motors and sensors: check out ev3dev2.motor.Motor.on_for_rotations() and the other on_for_* methods on motors.

	Easier interactivity via buttons: each button now has wait_for_pressed, wait_for_released and wait_for_bump

	Improved ev3dev2.sound.Sound and ev3dev2.display.Display interfaces

	New color conversion methods in ev3dev2.sensor.lego.ColorSensor

API reference

Device interfaces

Contents:

	Motor classes
	Units

	Common motors

	Additional motors

	Multiple-motor groups

	Sensor classes
	Dedicated sensor classes

	Base “Sensor”

	Button

	Leds
	LED group and color names

	Power Supply

	Sound

	Display
	Bitmap fonts

	Console
	Console fonts

	Lego Port

	Port names

	Wheels
	EV3 Rim

	EV3 Tire

	EV3 Education Set Rim

	EV3 Education Set Tire

Other APIs

Each class in ev3dev module inherits from the base ev3dev2.Device class.

	
class ev3dev2.Device(class_name, name_pattern='*', name_exact=False, **kwargs)

	The ev3dev device base class

	
ev3dev2.list_device_names(class_path, name_pattern, **kwargs)

	This is a generator function that lists names of all devices matching the
provided parameters.

	Parameters:

	
	class_path: class path of the device, a subdirectory of /sys/class.

	For example, ‘/sys/class/tacho-motor’.

	name_pattern: pattern that device name should match.

	For example, ‘sensor*’ or ‘motor*’. Default value: ‘*’.

	keyword arguments: used for matching the corresponding device

	attributes. For example, address=’outA’, or
driver_name=[‘lego-ev3-us’, ‘lego-nxt-us’]. When argument value
is a list, then a match against any entry of the list is
enough.

	
ev3dev2.list_devices(class_name, name_pattern, **kwargs)

	This is a generator function that takes same arguments as Device class
and enumerates all devices present in the system that match the provided
arguments.

	Parameters:

	
	class_name: class name of the device, a subdirectory of /sys/class.

	For example, ‘tacho-motor’.

	name_pattern: pattern that device name should match.

	For example, ‘sensor*’ or ‘motor*’. Default value: ‘*’.

	keyword arguments: used for matching the corresponding device

	attributes. For example, address=’outA’, or
driver_name=[‘lego-ev3-us’, ‘lego-nxt-us’]. When argument value
is a list, then a match against any entry of the list is
enough.

	
ev3dev2.motor.list_motors(name_pattern='*', **kwargs)

	This is a generator function that enumerates all tacho motors that match
the provided arguments.

	Parameters:

	
	name_pattern: pattern that device name should match.

	For example, ‘motor*’. Default value: ‘*’.

	keyword arguments: used for matching the corresponding device

	attributes. For example, driver_name=’lego-ev3-l-motor’, or
address=[‘outB’, ‘outC’]. When argument value
is a list, then a match against any entry of the list is
enough.

	
ev3dev2.sensor.list_sensors(name_pattern='sensor*', **kwargs)

	This is a generator function that enumerates all sensors that match the
provided arguments.

	Parameters:

	
	name_pattern: pattern that device name should match.

	For example, ‘sensor*’. Default value: ‘*’.

	keyword arguments: used for matching the corresponding device

	attributes. For example, driver_name=’lego-ev3-touch’, or
address=[‘in1’, ‘in3’]. When argument value is a list,
then a match against any entry of the list is enough.

Motor classes

	Units

	Common motors

	Tacho Motor (Motor)

	Large EV3 Motor

	Medium EV3 Motor

	Additional motors

	DC Motor

	Servo Motor

	Actuonix L12 50 Linear Servo Motor

	Actuonix L12 100 Linear Servo Motor

	Multiple-motor groups

	Motor Set

	Move Tank

	Move Steering

	Move Joystick

	Move Differential

Units

Most methods which run motors will accept a speed argument. While this can
be provided as an integer which will be interpreted as a percentage of max
speed, you can also specify an instance of any of the following classes, each
of which represents a different unit system:

	
class ev3dev2.motor.SpeedValue

	A base class for other unit types. Don’t use this directly; instead, see
SpeedPercent, SpeedRPS, SpeedRPM,
SpeedDPS, and SpeedDPM.

	
class ev3dev2.motor.SpeedPercent(percent)

	Speed as a percentage of the motor’s maximum rated speed.

	
class ev3dev2.motor.SpeedNativeUnits(native_counts)

	Speed in tacho counts per second.

	
class ev3dev2.motor.SpeedRPS(rotations_per_second)

	Speed in rotations-per-second.

	
class ev3dev2.motor.SpeedRPM(rotations_per_minute)

	Speed in rotations-per-minute.

	
class ev3dev2.motor.SpeedDPS(degrees_per_second)

	Speed in degrees-per-second.

	
class ev3dev2.motor.SpeedDPM(degrees_per_minute)

	Speed in degrees-per-minute.

Example:

from ev3dev2.motor import SpeedRPM

later...

rotates the motor at 200 RPM (rotations-per-minute) for five seconds.
my_motor.on_for_seconds(SpeedRPM(200), 5)

Common motors

Tacho Motor (Motor)

	
class ev3dev2.motor.Motor(address=None, name_pattern='*', name_exact=False, **kwargs)

	Bases: ev3dev2.Device

The motor class provides a uniform interface for using motors with
positional and directional feedback such as the EV3 and NXT motors.
This feedback allows for precise control of the motors. This is the
most common type of motor, so we just call it motor.

	
COMMAND_RUN_FOREVER = 'run-forever'

	Run the motor until another command is sent.

	
COMMAND_RUN_TO_ABS_POS = 'run-to-abs-pos'

	Run to an absolute position specified by position_sp and then
stop using the action specified in stop_action.

	
COMMAND_RUN_TO_REL_POS = 'run-to-rel-pos'

	Run to a position relative to the current position value.
The new position will be current position + position_sp.
When the new position is reached, the motor will stop using
the action specified by stop_action.

	
COMMAND_RUN_TIMED = 'run-timed'

	Run the motor for the amount of time specified in time_sp
and then stop the motor using the action specified by stop_action.

	
COMMAND_RUN_DIRECT = 'run-direct'

	Run the motor at the duty cycle specified by duty_cycle_sp.
Unlike other run commands, changing duty_cycle_sp while running will
take effect immediately.

	
COMMAND_STOP = 'stop'

	Stop any of the run commands before they are complete using the
action specified by stop_action.

	
COMMAND_RESET = 'reset'

	Reset all of the motor parameter attributes to their default value.
This will also have the effect of stopping the motor.

	
ENCODER_POLARITY_NORMAL = 'normal'

	Sets the normal polarity of the rotary encoder.

	
ENCODER_POLARITY_INVERSED = 'inversed'

	Sets the inversed polarity of the rotary encoder.

	
POLARITY_NORMAL = 'normal'

	With normal polarity, a positive duty cycle will
cause the motor to rotate clockwise.

	
POLARITY_INVERSED = 'inversed'

	With inversed polarity, a positive duty cycle will
cause the motor to rotate counter-clockwise.

	
STATE_RUNNING = 'running'

	Power is being sent to the motor.

	
STATE_RAMPING = 'ramping'

	The motor is ramping up or down and has not yet reached a constant output level.

	
STATE_HOLDING = 'holding'

	The motor is not turning, but rather attempting to hold a fixed position.

	
STATE_OVERLOADED = 'overloaded'

	The motor is turning, but cannot reach its speed_sp.

	
STATE_STALLED = 'stalled'

	The motor is not turning when it should be.

	
STOP_ACTION_COAST = 'coast'

	Power will be removed from the motor and it will freely coast to a stop.

	
STOP_ACTION_BRAKE = 'brake'

	Power will be removed from the motor and a passive electrical load will
be placed on the motor. This is usually done by shorting the motor terminals
together. This load will absorb the energy from the rotation of the motors and
cause the motor to stop more quickly than coasting.

	
STOP_ACTION_HOLD = 'hold'

	Does not remove power from the motor. Instead it actively try to hold the motor
at the current position. If an external force tries to turn the motor, the motor
will push back to maintain its position.

	
address

	Returns the name of the port that this motor is connected to.

	
command

	Sends a command to the motor controller. See commands for a list of
possible values.

	
commands

	Returns a list of commands that are supported by the motor
controller. Possible values are run-forever, run-to-abs-pos, run-to-rel-pos,
run-timed, run-direct, stop and reset. Not all commands may be supported.

	run-forever will cause the motor to run until another command is sent.

	run-to-abs-pos will run to an absolute position specified by position_sp
and then stop using the action specified in stop_action.

	run-to-rel-pos will run to a position relative to the current position value.
The new position will be current position + position_sp. When the new
position is reached, the motor will stop using the action specified by stop_action.

	run-timed will run the motor for the amount of time specified in time_sp
and then stop the motor using the action specified by stop_action.

	run-direct will run the motor at the duty cycle specified by duty_cycle_sp.
Unlike other run commands, changing duty_cycle_sp while running will
take effect immediately.

	stop will stop any of the run commands before they are complete using the
action specified by stop_action.

	reset will reset all of the motor parameter attributes to their default value.
This will also have the effect of stopping the motor.

	
count_per_rot

	Returns the number of tacho counts in one rotation of the motor. Tacho counts
are used by the position and speed attributes, so you can use this value
to convert rotations or degrees to tacho counts. (rotation motors only)

	
count_per_m

	Returns the number of tacho counts in one meter of travel of the motor. Tacho
counts are used by the position and speed attributes, so you can use this
value to convert from distance to tacho counts. (linear motors only)

	
driver_name

	Returns the name of the driver that provides this tacho motor device.

	
duty_cycle

	Returns the current duty cycle of the motor. Units are percent. Values
are -100 to 100.

	
duty_cycle_sp

	Writing sets the duty cycle setpoint. Reading returns the current value.
Units are in percent. Valid values are -100 to 100. A negative value causes
the motor to rotate in reverse.

	
full_travel_count

	Returns the number of tacho counts in the full travel of the motor. When
combined with the count_per_m atribute, you can use this value to
calculate the maximum travel distance of the motor. (linear motors only)

	
polarity

	Sets the polarity of the motor. With normal polarity, a positive duty
cycle will cause the motor to rotate clockwise. With inversed polarity,
a positive duty cycle will cause the motor to rotate counter-clockwise.
Valid values are normal and inversed.

	
position

	Returns the current position of the motor in pulses of the rotary
encoder. When the motor rotates clockwise, the position will increase.
Likewise, rotating counter-clockwise causes the position to decrease.
Writing will set the position to that value.

	
position_p

	The proportional constant for the position PID.

	
position_i

	The integral constant for the position PID.

	
position_d

	The derivative constant for the position PID.

	
position_sp

	Writing specifies the target position for the run-to-abs-pos and run-to-rel-pos
commands. Reading returns the current value. Units are in tacho counts. You
can use the value returned by count_per_rot to convert tacho counts to/from
rotations or degrees.

	
max_speed

	Returns the maximum value that is accepted by the speed_sp attribute. This
may be slightly different than the maximum speed that a particular motor can
reach - it’s the maximum theoretical speed.

	
speed

	Returns the current motor speed in tacho counts per second. Note, this is
not necessarily degrees (although it is for LEGO motors). Use the count_per_rot
attribute to convert this value to RPM or deg/sec.

	
speed_sp

	Writing sets the target speed in tacho counts per second used for all run-*
commands except run-direct. Reading returns the current value. A negative
value causes the motor to rotate in reverse with the exception of run-to-*-pos
commands where the sign is ignored. Use the count_per_rot attribute to convert
RPM or deg/sec to tacho counts per second. Use the count_per_m attribute to
convert m/s to tacho counts per second.

	
ramp_up_sp

	Writing sets the ramp up setpoint. Reading returns the current value. Units
are in milliseconds and must be positive. When set to a non-zero value, the
motor speed will increase from 0 to 100% of max_speed over the span of this
setpoint. The actual ramp time is the ratio of the difference between the
speed_sp and the current speed and max_speed multiplied by ramp_up_sp.

	
ramp_down_sp

	Writing sets the ramp down setpoint. Reading returns the current value. Units
are in milliseconds and must be positive. When set to a non-zero value, the
motor speed will decrease from 0 to 100% of max_speed over the span of this
setpoint. The actual ramp time is the ratio of the difference between the
speed_sp and the current speed and max_speed multiplied by ramp_down_sp.

	
speed_p

	The proportional constant for the speed regulation PID.

	
speed_i

	The integral constant for the speed regulation PID.

	
speed_d

	The derivative constant for the speed regulation PID.

	
state

	Reading returns a list of state flags. Possible flags are
running, ramping, holding, overloaded and stalled.

	
stop_action

	Reading returns the current stop action. Writing sets the stop action.
The value determines the motors behavior when command is set to stop.
Also, it determines the motors behavior when a run command completes. See
stop_actions for a list of possible values.

	
stop_actions

	Returns a list of stop actions supported by the motor controller.
Possible values are coast, brake and hold. coast means that power will
be removed from the motor and it will freely coast to a stop. brake means
that power will be removed from the motor and a passive electrical load will
be placed on the motor. This is usually done by shorting the motor terminals
together. This load will absorb the energy from the rotation of the motors and
cause the motor to stop more quickly than coasting. hold does not remove
power from the motor. Instead it actively tries to hold the motor at the current
position. If an external force tries to turn the motor, the motor will ‘push
back’ to maintain its position.

	
time_sp

	Writing specifies the amount of time the motor will run when using the
run-timed command. Reading returns the current value. Units are in
milliseconds.

	
run_forever(**kwargs)

	Run the motor until another command is sent.

	
run_to_abs_pos(**kwargs)

	Run to an absolute position specified by position_sp and then
stop using the action specified in stop_action.

	
run_to_rel_pos(**kwargs)

	Run to a position relative to the current position value.
The new position will be current position + position_sp.
When the new position is reached, the motor will stop using
the action specified by stop_action.

	
run_timed(**kwargs)

	Run the motor for the amount of time specified in time_sp
and then stop the motor using the action specified by stop_action.

	
run_direct(**kwargs)

	Run the motor at the duty cycle specified by duty_cycle_sp.
Unlike other run commands, changing duty_cycle_sp while running will
take effect immediately.

	
stop(**kwargs)

	Stop any of the run commands before they are complete using the
action specified by stop_action.

	
reset(**kwargs)

	Reset all of the motor parameter attributes to their default value.
This will also have the effect of stopping the motor.

	
is_running

	Power is being sent to the motor.

	
is_ramping

	The motor is ramping up or down and has not yet reached a constant output level.

	
is_holding

	The motor is not turning, but rather attempting to hold a fixed position.

	
is_overloaded

	The motor is turning, but cannot reach its speed_sp.

	
is_stalled

	The motor is not turning when it should be.

	
wait(cond, timeout=None)

	Blocks until cond(self.state) is True. The condition is
checked when there is an I/O event related to the state attribute.
Exits early when timeout (in milliseconds) is reached.

Returns True if the condition is met, and False if the timeout
is reached.

	
wait_until_not_moving(timeout=None)

	Blocks until running is not in self.state or stalled is in
self.state. The condition is checked when there is an I/O event
related to the state attribute. Exits early when timeout
(in milliseconds) is reached.

Returns True if the condition is met, and False if the timeout
is reached.

Example:

m.wait_until_not_moving()

	
wait_until(s, timeout=None)

	Blocks until s is in self.state. The condition is checked when
there is an I/O event related to the state attribute. Exits early
when timeout (in milliseconds) is reached.

Returns True if the condition is met, and False if the timeout
is reached.

Example:

m.wait_until('stalled')

	
wait_while(s, timeout=None)

	Blocks until s is not in self.state. The condition is checked
when there is an I/O event related to the state attribute. Exits
early when timeout (in milliseconds) is reached.

Returns True if the condition is met, and False if the timeout
is reached.

Example:

m.wait_while('running')

	
on_for_rotations(speed, rotations, brake=True, block=True)

	Rotate the motor at speed for rotations

speed can be a percentage or a ev3dev2.motor.SpeedValue
object, enabling use of other units.

	
on_for_degrees(speed, degrees, brake=True, block=True)

	Rotate the motor at speed for degrees

speed can be a percentage or a ev3dev2.motor.SpeedValue
object, enabling use of other units.

	
on_to_position(speed, position, brake=True, block=True)

	Rotate the motor at speed to position

speed can be a percentage or a ev3dev2.motor.SpeedValue
object, enabling use of other units.

	
on_for_seconds(speed, seconds, brake=True, block=True)

	Rotate the motor at speed for seconds

speed can be a percentage or a ev3dev2.motor.SpeedValue
object, enabling use of other units.

	
on(speed, brake=True, block=False)

	Rotate the motor at speed for forever

speed can be a percentage or a ev3dev2.motor.SpeedValue
object, enabling use of other units.

Note that block is False by default, this is different from the
other on_for_XYZ methods.

Large EV3 Motor

	
class ev3dev2.motor.LargeMotor(address=None, name_pattern='*', name_exact=False, **kwargs)

	Bases: ev3dev2.motor.Motor

EV3/NXT large servo motor.

Same as Motor, except it will only successfully initialize if it finds a “large” motor.

Medium EV3 Motor

	
class ev3dev2.motor.MediumMotor(address=None, name_pattern='*', name_exact=False, **kwargs)

	Bases: ev3dev2.motor.Motor

EV3 medium servo motor.

Same as Motor, except it will only successfully initialize if it finds a “medium” motor.

Additional motors

DC Motor

	
class ev3dev2.motor.DcMotor(address=None, name_pattern='motor*', name_exact=False, **kwargs)

	Bases: ev3dev2.Device

The DC motor class provides a uniform interface for using regular DC motors
with no fancy controls or feedback. This includes LEGO MINDSTORMS RCX motors
and LEGO Power Functions motors.

	
address

	Returns the name of the port that this motor is connected to.

	
command

	Sets the command for the motor. Possible values are run-forever, run-timed and
stop. Not all commands may be supported, so be sure to check the contents
of the commands attribute.

	
commands

	Returns a list of commands supported by the motor
controller.

	
driver_name

	Returns the name of the motor driver that loaded this device. See the list
of [supported devices] for a list of drivers.

	
duty_cycle

	Shows the current duty cycle of the PWM signal sent to the motor. Values
are -100 to 100 (-100% to 100%).

	
duty_cycle_sp

	Writing sets the duty cycle setpoint of the PWM signal sent to the motor.
Valid values are -100 to 100 (-100% to 100%). Reading returns the current
setpoint.

	
polarity

	Sets the polarity of the motor. Valid values are normal and inversed.

	
ramp_down_sp

	Sets the time in milliseconds that it take the motor to ramp down from 100%
to 0%. Valid values are 0 to 10000 (10 seconds). Default is 0.

	
ramp_up_sp

	Sets the time in milliseconds that it take the motor to up ramp from 0% to
100%. Valid values are 0 to 10000 (10 seconds). Default is 0.

	
state

	Gets a list of flags indicating the motor status. Possible
flags are running and ramping. running indicates that the motor is
powered. ramping indicates that the motor has not yet reached the
duty_cycle_sp.

	
stop_action

	Sets the stop action that will be used when the motor stops. Read
stop_actions to get the list of valid values.

	
stop_actions

	Gets a list of stop actions. Valid values are coast
and brake.

	
time_sp

	Writing specifies the amount of time the motor will run when using the
run-timed command. Reading returns the current value. Units are in
milliseconds.

	
COMMAND_RUN_FOREVER = 'run-forever'

	Run the motor until another command is sent.

	
COMMAND_RUN_TIMED = 'run-timed'

	Run the motor for the amount of time specified in time_sp
and then stop the motor using the action specified by stop_action.

	
COMMAND_RUN_DIRECT = 'run-direct'

	Run the motor at the duty cycle specified by duty_cycle_sp.
Unlike other run commands, changing duty_cycle_sp while running will
take effect immediately.

	
COMMAND_STOP = 'stop'

	Stop any of the run commands before they are complete using the
action specified by stop_action.

	
POLARITY_NORMAL = 'normal'

	With normal polarity, a positive duty cycle will
cause the motor to rotate clockwise.

	
POLARITY_INVERSED = 'inversed'

	With inversed polarity, a positive duty cycle will
cause the motor to rotate counter-clockwise.

	
STOP_ACTION_COAST = 'coast'

	Power will be removed from the motor and it will freely coast to a stop.

	
STOP_ACTION_BRAKE = 'brake'

	Power will be removed from the motor and a passive electrical load will
be placed on the motor. This is usually done by shorting the motor terminals
together. This load will absorb the energy from the rotation of the motors and
cause the motor to stop more quickly than coasting.

	
run_forever(**kwargs)

	Run the motor until another command is sent.

	
run_timed(**kwargs)

	Run the motor for the amount of time specified in time_sp
and then stop the motor using the action specified by stop_action.

	
run_direct(**kwargs)

	Run the motor at the duty cycle specified by duty_cycle_sp.
Unlike other run commands, changing duty_cycle_sp while running will
take effect immediately.

	
stop(**kwargs)

	Stop any of the run commands before they are complete using the
action specified by stop_action.

Servo Motor

	
class ev3dev2.motor.ServoMotor(address=None, name_pattern='motor*', name_exact=False, **kwargs)

	Bases: ev3dev2.Device

The servo motor class provides a uniform interface for using hobby type
servo motors.

	
address

	Returns the name of the port that this motor is connected to.

	
command

	Sets the command for the servo. Valid values are run and float. Setting
to run will cause the servo to be driven to the position_sp set in the
position_sp attribute. Setting to float will remove power from the motor.

	
driver_name

	Returns the name of the motor driver that loaded this device. See the list
of [supported devices] for a list of drivers.

	
max_pulse_sp

	Used to set the pulse size in milliseconds for the signal that tells the
servo to drive to the maximum (clockwise) position_sp. Default value is 2400.
Valid values are 2300 to 2700. You must write to the position_sp attribute for
changes to this attribute to take effect.

	
mid_pulse_sp

	Used to set the pulse size in milliseconds for the signal that tells the
servo to drive to the mid position_sp. Default value is 1500. Valid
values are 1300 to 1700. For example, on a 180 degree servo, this would be
90 degrees. On continuous rotation servo, this is the ‘neutral’ position_sp
where the motor does not turn. You must write to the position_sp attribute for
changes to this attribute to take effect.

	
min_pulse_sp

	Used to set the pulse size in milliseconds for the signal that tells the
servo to drive to the miniumum (counter-clockwise) position_sp. Default value
is 600. Valid values are 300 to 700. You must write to the position_sp
attribute for changes to this attribute to take effect.

	
polarity

	Sets the polarity of the servo. Valid values are normal and inversed.
Setting the value to inversed will cause the position_sp value to be
inversed. i.e -100 will correspond to max_pulse_sp, and 100 will
correspond to min_pulse_sp.

	
position_sp

	Reading returns the current position_sp of the servo. Writing instructs the
servo to move to the specified position_sp. Units are percent. Valid values
are -100 to 100 (-100% to 100%) where -100 corresponds to min_pulse_sp,
0 corresponds to mid_pulse_sp and 100 corresponds to max_pulse_sp.

	
rate_sp

	Sets the rate_sp at which the servo travels from 0 to 100.0% (half of the full
range of the servo). Units are in milliseconds. Example: Setting the rate_sp
to 1000 means that it will take a 180 degree servo 2 second to move from 0
to 180 degrees. Note: Some servo controllers may not support this in which
case reading and writing will fail with -EOPNOTSUPP. In continuous rotation
servos, this value will affect the rate_sp at which the speed ramps up or down.

	
state

	Returns a list of flags indicating the state of the servo.
Possible values are:
* running: Indicates that the motor is powered.

	
COMMAND_RUN = 'run'

	Drive servo to the position set in the position_sp attribute.

	
COMMAND_FLOAT = 'float'

	Remove power from the motor.

	
POLARITY_NORMAL = 'normal'

	With normal polarity, a positive duty cycle will
cause the motor to rotate clockwise.

	
POLARITY_INVERSED = 'inversed'

	With inversed polarity, a positive duty cycle will
cause the motor to rotate counter-clockwise.

	
run(**kwargs)

	Drive servo to the position set in the position_sp attribute.

	
float(**kwargs)

	Remove power from the motor.

Actuonix L12 50 Linear Servo Motor

	
class ev3dev2.motor.ActuonixL1250Motor(address=None, name_pattern='linear*', name_exact=False, **kwargs)

	Bases: ev3dev2.motor.Motor

Actuonix L12 50 linear servo motor.

Same as Motor, except it will only successfully initialize if it finds an Actuonix L12 50 linear servo motor

Actuonix L12 100 Linear Servo Motor

	
class ev3dev2.motor.ActuonixL12100Motor(address=None, name_pattern='linear*', name_exact=False, **kwargs)

	Bases: ev3dev2.motor.Motor

Actuonix L12 100 linear servo motor.

Same as Motor, except it will only successfully initialize if it finds an Actuonix L12 100 linear servo motor

Multiple-motor groups

Motor Set

	
class ev3dev2.motor.MotorSet(motor_specs, desc=None)

	
	
off(motors=None, brake=True)

	Stop motors immediately. Configure motors to brake if brake is set.

	
stop(motors=None, brake=True)

	stop is an alias of off. This is deprecated but helps keep
the API for MotorSet somewhat similar to Motor which has both stop
and off.

Move Tank

	
class ev3dev2.motor.MoveTank(left_motor_port, right_motor_port, desc=None, motor_class=<class 'ev3dev2.motor.LargeMotor'>)

	Bases: ev3dev2.motor.MotorSet

Controls a pair of motors simultaneously, via individual speed setpoints for each motor.

Example:

tank_drive = MoveTank(OUTPUT_A, OUTPUT_B)
drive in a turn for 10 rotations of the outer motor
tank_drive.on_for_rotations(50, 75, 10)

	
on_for_degrees(left_speed, right_speed, degrees, brake=True, block=True)

	Rotate the motors at ‘left_speed & right_speed’ for ‘degrees’. Speeds
can be percentages or any SpeedValue implementation.

If the left speed is not equal to the right speed (i.e., the robot will
turn), the motor on the outside of the turn will rotate for the full
degrees while the motor on the inside will have its requested
distance calculated according to the expected turn.

	
on_for_rotations(left_speed, right_speed, rotations, brake=True, block=True)

	Rotate the motors at ‘left_speed & right_speed’ for ‘rotations’. Speeds
can be percentages or any SpeedValue implementation.

If the left speed is not equal to the right speed (i.e., the robot will
turn), the motor on the outside of the turn will rotate for the full
rotations while the motor on the inside will have its requested
distance calculated according to the expected turn.

	
on_for_seconds(left_speed, right_speed, seconds, brake=True, block=True)

	Rotate the motors at ‘left_speed & right_speed’ for ‘seconds’. Speeds
can be percentages or any SpeedValue implementation.

	
on(left_speed, right_speed)

	Start rotating the motors according to left_speed and right_speed forever.
Speeds can be percentages or any SpeedValue implementation.

	
follow_line(kp, ki, kd, speed, target_light_intensity=None, follow_left_edge=True, white=60, off_line_count_max=20, sleep_time=0.01, follow_for=<function follow_for_forever>, **kwargs)

	PID line follower

kp, ki, and kd are the PID constants.

speed is the desired speed of the midpoint of the robot

	target_light_intensity is the reflected light intensity when the color sensor

	is on the edge of the line. If this is None we assume that the color sensor
is on the edge of the line and will take a reading to set this variable.

follow_left_edge determines if we follow the left or right edge of the line

	white is the reflected_light_intensity that is used to determine if we have

	lost the line

	off_line_count_max is how many consecutive times through the loop the

	reflected_light_intensity must be greater than white before we
declare the line lost and raise an exception

	sleep_time is how many seconds we sleep on each pass through

	the loop. This is to give the robot a chance to react
to the new motor settings. This should be something small such
as 0.01 (10ms).

	follow_for is called to determine if we should keep following the

	line or stop. This function will be passed self (the current
MoveTank object). Current supported options are:
- follow_for_forever
- follow_for_ms

**kwargs will be passed to the follow_for function

Example:

from ev3dev2.motor import OUTPUT_A, OUTPUT_B, MoveTank, SpeedPercent, follow_for_ms
from ev3dev2.sensor.lego import ColorSensor

tank = MoveTank(OUTPUT_A, OUTPUT_B)
tank.cs = ColorSensor()

try:
 # Follow the line for 4500ms
 tank.follow_line(
 kp=11.3, ki=0.05, kd=3.2,
 speed=SpeedPercent(30),
 follow_for=follow_for_ms,
 ms=4500
)
except Exception:
 tank.stop()
 raise

Move Steering

	
class ev3dev2.motor.MoveSteering(left_motor_port, right_motor_port, desc=None, motor_class=<class 'ev3dev2.motor.LargeMotor'>)

	Bases: ev3dev2.motor.MoveTank

Controls a pair of motors simultaneously, via a single “steering” value and a speed.

	steering [-100, 100]:

	
	-100 means turn left on the spot (right motor at 100% forward, left motor at 100% backward),

	0 means drive in a straight line, and

	100 means turn right on the spot (left motor at 100% forward, right motor at 100% backward).

“steering” can be any number between -100 and 100.

Example:

steering_drive = MoveSteering(OUTPUT_A, OUTPUT_B)
drive in a turn for 10 rotations of the outer motor
steering_drive.on_for_rotations(-20, SpeedPercent(75), 10)

	
on_for_rotations(steering, speed, rotations, brake=True, block=True)

	Rotate the motors according to the provided steering.

The distance each motor will travel follows the rules of MoveTank.on_for_rotations().

	
on_for_degrees(steering, speed, degrees, brake=True, block=True)

	Rotate the motors according to the provided steering.

The distance each motor will travel follows the rules of MoveTank.on_for_degrees().

	
on_for_seconds(steering, speed, seconds, brake=True, block=True)

	Rotate the motors according to the provided steering for seconds.

	
on(steering, speed)

	Start rotating the motors according to the provided steering and
speed forever.

	
get_speed_steering(steering, speed)

	Calculate the speed_sp for each motor in a pair to achieve the specified
steering. Note that calling this function alone will not make the
motors move, it only calculates the speed. A run_* function must be called
afterwards to make the motors move.

	steering [-100, 100]:

	
	-100 means turn left on the spot (right motor at 100% forward, left motor at 100% backward),

	0 means drive in a straight line, and

	100 means turn right on the spot (left motor at 100% forward, right motor at 100% backward).

	speed:

	The speed that should be applied to the outmost motor (the one
rotating faster). The speed of the other motor will be computed
automatically.

Move Joystick

	
class ev3dev2.motor.MoveJoystick(left_motor_port, right_motor_port, desc=None, motor_class=<class 'ev3dev2.motor.LargeMotor'>)

	Bases: ev3dev2.motor.MoveTank

Used to control a pair of motors via a single joystick vector.

	
on(x, y, radius=100.0)

	Convert x,y joystick coordinates to left/right motor speed percentages
and move the motors.

This will use a classic “arcade drive” algorithm: a full-forward joystick
goes straight forward and likewise for full-backward. Pushing the joystick
all the way to one side will make it turn on the spot in that direction.
Positions in the middle will control how fast the vehicle moves and how
sharply it turns.

	“x”, “y”:

	The X and Y coordinates of the joystick’s position, with
(0,0) representing the center position. X is horizontal and Y is vertical.

	radius (default 100):

	The radius of the joystick, controlling the range of the input (x, y) values.
e.g. if “x” and “y” can be between -1 and 1, radius should be set to “1”.

	
static angle_to_speed_percentage(angle)

	The following graphic illustrates the motor power outputs for the
left and right motors based on where the joystick is pointing, of the
form (left power, right power):

 (1, 1)

 . | .
 . | .
 (0, 1) . | . (1, 0)
 . | .
 . | .
 . | .
 . | .
 . | .
 . | x-axis .
(-1, 1) .---------------------------------------. (1, -1)
 . | .
 . | .
 . | .
 . | y-axis .
 . | .
 (0, -1) . | . (-1, 0)
 . | .
 . | .

 (-1, -1)

The joystick is a circle within a circle where the (x, y) coordinates
of the joystick form an angle with the x-axis. Our job is to translate
this angle into the percentage of power that should be sent to each motor.
For instance if the joystick is moved all the way to the top of the circle
we want both motors to move forward with 100% power…that is represented
above by (1, 1). If the joystick is moved all the way to the right side of
the circle we want to rotate clockwise so we move the left motor forward 100%
and the right motor backwards 100%…so (1, -1). If the joystick is at
45 degrees then we move apply (1, 0) to move the left motor forward 100% and
the right motor stays still.

The 8 points shown above are pretty easy. For the points in between those 8
we do some math to figure out what the percentages should be. Take 11.25 degrees
for example. We look at how the motors transition from 0 degrees to 45 degrees:
- the left motor is 1 so that is easy
- the right motor moves from -1 to 0

We determine how far we are between 0 and 45 degrees (11.25 is 25% of 45) so we
know that the right motor should be 25% of the way from -1 to 0…so -0.75 is the
percentage for the right motor at 11.25 degrees.

Move Differential

	
class ev3dev2.motor.MoveDifferential(left_motor_port, right_motor_port, wheel_class, wheel_distance_mm, desc=None, motor_class=<class 'ev3dev2.motor.LargeMotor'>)

	Bases: ev3dev2.motor.MoveTank

MoveDifferential is a child of MoveTank that adds the following capabilities:

	drive in a straight line for a specified distance

	rotate in place in a circle (clockwise or counter clockwise) for a
specified number of degrees

	drive in an arc (clockwise or counter clockwise) of a specified radius
for a specified distance

Odometry can be use to enable driving to specific coordinates and
rotating to a specific angle.

New arguments:

wheel_class - Typically a child class of ev3dev2.wheel.Wheel. This is used to
get the circumference of the wheels of the robot. The circumference is
needed for several calculations in this class.

wheel_distance_mm - The distance between the mid point of the two
wheels of the robot. You may need to do some test drives to find
the correct value for your robot. It is not as simple as measuring
the distance between the midpoints of the two wheels. The weight of
the robot, center of gravity, etc come into play.

You can use utils/move_differential.py to call on_arc_left() to do
some test drives of circles with a radius of 200mm. Adjust your
wheel_distance_mm until your robot can drive in a perfect circle
and stop exactly where it started. It does not have to be a circle
with a radius of 200mm, you can test with any size circle but you do
not want it to be too small or it will be difficult to test small
adjustments to wheel_distance_mm.

Example:

from ev3dev2.motor import OUTPUT_A, OUTPUT_B, MoveDifferential, SpeedRPM
from ev3dev2.wheel import EV3Tire

STUD_MM = 8

test with a robot that:
- uses the standard wheels known as EV3Tire
- wheels are 16 studs apart
mdiff = MoveDifferential(OUTPUT_A, OUTPUT_B, EV3Tire, 16 * STUD_MM)

Rotate 90 degrees clockwise
mdiff.turn_right(SpeedRPM(40), 90)

Drive forward 500 mm
mdiff.on_for_distance(SpeedRPM(40), 500)

Drive in arc to the right along an imaginary circle of radius 150 mm.
Drive for 700 mm around this imaginary circle.
mdiff.on_arc_right(SpeedRPM(80), 150, 700)

Enable odometry
mdiff.odometry_start()

Use odometry to drive to specific coordinates
mdiff.on_to_coordinates(SpeedRPM(40), 300, 300)

Use odometry to go back to where we started
mdiff.on_to_coordinates(SpeedRPM(40), 0, 0)

Use odometry to rotate in place to 90 degrees
mdiff.turn_to_angle(SpeedRPM(40), 90)

Disable odometry
mdiff.odometry_stop()

	
on_for_distance(speed, distance_mm, brake=True, block=True)

	Drive distance_mm

	
on_arc_right(speed, radius_mm, distance_mm, brake=True, block=True)

	Drive clockwise in a circle with ‘radius_mm’ for ‘distance_mm’

	
on_arc_left(speed, radius_mm, distance_mm, brake=True, block=True)

	Drive counter-clockwise in a circle with ‘radius_mm’ for ‘distance_mm’

	
turn_right(speed, degrees, brake=True, block=True)

	Rotate clockwise ‘degrees’ in place

	
turn_left(speed, degrees, brake=True, block=True)

	Rotate counter-clockwise ‘degrees’ in place

	
odometry_start(theta_degrees_start=90.0, x_pos_start=0.0, y_pos_start=0.0, sleep_time=0.005)

	Ported from:
http://seattlerobotics.org/encoder/200610/Article3/IMU%20Odometry,%20by%20David%20Anderson.htm

A thread is started that will run until the user calls odometry_stop()
which will set odometry_thread_run to False

	
odometry_stop()

	Signal the odometry thread to exit and wait for it to exit

	
turn_to_angle(speed, angle_target_degrees, brake=True, block=True)

	Rotate in place to angle_target_degrees at speed

	
on_to_coordinates(speed, x_target_mm, y_target_mm, brake=True, block=True)

	Drive to (x_target_mm, y_target_mm) coordinates at speed

Sensor classes

	Dedicated sensor classes

	Touch Sensor

	Color Sensor

	Ultrasonic Sensor

	Gyro Sensor

	Infrared Sensor

	Sound Sensor

	Light Sensor

	Base “Sensor”

Dedicated sensor classes

These classes derive from ev3dev2.sensor.Sensor and provide helper functions
specific to the corresponding sensor type. Each provides sensible property
accessors for the main functionality of the sensor.

Touch Sensor

	
class ev3dev2.sensor.lego.TouchSensor(address=None, name_pattern='sensor*', name_exact=False, **kwargs)

	Bases: ev3dev2.sensor.Sensor

Touch Sensor

	
MODE_TOUCH = 'TOUCH'

	Button state

	
is_pressed

	A boolean indicating whether the current touch sensor is being
pressed.

	
wait_for_pressed(timeout_ms=None, sleep_ms=10)

	Wait for the touch sensor to be pressed down.

	
wait_for_released(timeout_ms=None, sleep_ms=10)

	Wait for the touch sensor to be released.

	
wait_for_bump(timeout_ms=None, sleep_ms=10)

	Wait for the touch sensor to be pressed down and then released.
Both actions must happen within timeout_ms.

Color Sensor

	
class ev3dev2.sensor.lego.ColorSensor(address=None, name_pattern='sensor*', name_exact=False, **kwargs)

	Bases: ev3dev2.sensor.Sensor

LEGO EV3 color sensor.

	
MODE_COL_REFLECT = 'COL-REFLECT'

	Reflected light. Red LED on.

	
MODE_COL_AMBIENT = 'COL-AMBIENT'

	Ambient light. Blue LEDs on.

	
MODE_COL_COLOR = 'COL-COLOR'

	Color. All LEDs rapidly cycling, appears white.

	
MODE_REF_RAW = 'REF-RAW'

	Raw reflected. Red LED on

	
MODE_RGB_RAW = 'RGB-RAW'

	Raw Color Components. All LEDs rapidly cycling, appears white.

	
COLOR_NOCOLOR = 0

	No color.

	
COLOR_BLACK = 1

	Black color.

	
COLOR_BLUE = 2

	Blue color.

	
COLOR_GREEN = 3

	Green color.

	
COLOR_YELLOW = 4

	Yellow color.

	
COLOR_RED = 5

	Red color.

	
COLOR_WHITE = 6

	White color.

	
COLOR_BROWN = 7

	Brown color.

	
reflected_light_intensity

	Reflected light intensity as a percentage (0 to 100). Light on sensor is red.

	
ambient_light_intensity

	Ambient light intensity, as a percentage (0 to 100). Light on sensor is dimly lit blue.

	
color

	
	Color detected by the sensor, categorized by overall value.

	
	0: No color

	1: Black

	2: Blue

	3: Green

	4: Yellow

	5: Red

	6: White

	7: Brown

	
color_name

	Returns NoColor, Black, Blue, etc

	
raw

	Red, green, and blue components of the detected color, as a tuple.

Officially in the range 0-1020 but the values returned will never be
that high. We do not yet know why the values returned are low, but
pointing the color sensor at a well lit sheet of white paper will return
values in the 250-400 range.

If this is an issue, check out the rgb() and calibrate_white() methods.

	
calibrate_white()

	The RGB raw values are on a scale of 0-1020 but you never see a value
anywhere close to 1020. This function is designed to be called when
the sensor is placed over a white object in order to figure out what
are the maximum RGB values the robot can expect to see. We will use
these maximum values to scale future raw values to a 0-255 range in
rgb().

If you never call this function red_max, green_max, and blue_max will
use a default value of 300. This default was selected by measuring
the RGB values of a white sheet of paper in a well lit room.

Note that there are several variables that influence the maximum RGB
values detected by the color sensor
- the distance of the color sensor to the white object
- the amount of light in the room
- shadows that the robot casts on the sensor

	
rgb

	Same as raw() but RGB values are scaled to 0-255

	
lab

	Return colors in Lab color space

	
hsv

	HSV: Hue, Saturation, Value
H: position in the spectrum
S: color saturation (“purity”)
V: color brightness

	
hls

	HLS: Hue, Luminance, Saturation
H: position in the spectrum
L: color lightness
S: color saturation

	
red

	Red component of the detected color, in the range 0-1020.

	
green

	Green component of the detected color, in the range 0-1020.

	
blue

	Blue component of the detected color, in the range 0-1020.

Ultrasonic Sensor

	
class ev3dev2.sensor.lego.UltrasonicSensor(address=None, name_pattern='sensor*', name_exact=False, **kwargs)

	Bases: ev3dev2.sensor.Sensor

LEGO EV3 ultrasonic sensor.

	
MODE_US_DIST_CM = 'US-DIST-CM'

	Continuous measurement in centimeters.

	
MODE_US_DIST_IN = 'US-DIST-IN'

	Continuous measurement in inches.

	
MODE_US_LISTEN = 'US-LISTEN'

	Listen.

	
MODE_US_SI_CM = 'US-SI-CM'

	Single measurement in centimeters.

	
MODE_US_SI_IN = 'US-SI-IN'

	Single measurement in inches.

	
distance_centimeters_continuous

	Measurement of the distance detected by the sensor,
in centimeters.

The sensor will continue to take measurements so
they are available for future reads.

Prefer using the equivalent UltrasonicSensor.distance_centimeters() property.

	
distance_centimeters_ping

	Measurement of the distance detected by the sensor,
in centimeters.

The sensor will take a single measurement then stop
broadcasting.

If you use this property too frequently (e.g. every
100msec), the sensor will sometimes lock up and writing
to the mode attribute will return an error. A delay of
250msec between each usage seems sufficient to keep the
sensor from locking up.

	
distance_centimeters

	Measurement of the distance detected by the sensor,
in centimeters.

Equivalent to UltrasonicSensor.distance_centimeters_continuous().

	
distance_inches_continuous

	Measurement of the distance detected by the sensor,
in inches.

The sensor will continue to take measurements so
they are available for future reads.

Prefer using the equivalent UltrasonicSensor.distance_inches() property.

	
distance_inches_ping

	Measurement of the distance detected by the sensor,
in inches.

The sensor will take a single measurement then stop
broadcasting.

If you use this property too frequently (e.g. every
100msec), the sensor will sometimes lock up and writing
to the mode attribute will return an error. A delay of
250msec between each usage seems sufficient to keep the
sensor from locking up.

	
distance_inches

	Measurement of the distance detected by the sensor,
in inches.

Equivalent to UltrasonicSensor.distance_inches_continuous().

	
other_sensor_present

	Boolean indicating whether another ultrasonic sensor could
be heard nearby.

Gyro Sensor

	
class ev3dev2.sensor.lego.GyroSensor(address=None, name_pattern='sensor*', name_exact=False, **kwargs)

	Bases: ev3dev2.sensor.Sensor

LEGO EV3 gyro sensor.

	
MODE_GYRO_ANG = 'GYRO-ANG'

	Angle

	
MODE_GYRO_RATE = 'GYRO-RATE'

	Rotational speed

	
MODE_GYRO_FAS = 'GYRO-FAS'

	Raw sensor value

	
MODE_GYRO_G_A = 'GYRO-G&A'

	Angle and rotational speed

	
MODE_GYRO_CAL = 'GYRO-CAL'

	Calibration ???

	
angle

	The number of degrees that the sensor has been rotated
since it was put into this mode.

	
rate

	The rate at which the sensor is rotating, in degrees/second.

	
angle_and_rate

	Angle (degrees) and Rotational Speed (degrees/second).

	
reset()

	Resets the angle to 0.

	Caveats:

	
	This function only resets the angle to 0, it does not fix drift.

	This function only works on EV3, it does not work on BrickPi,
PiStorms, or with any sensor multiplexors.

	
wait_until_angle_changed_by(delta, direction_sensitive=False)

	Wait until angle has changed by specified amount.

If direction_sensitive is True we will wait until angle has changed
by delta and with the correct sign.

If direction_sensitive is False (default) we will wait until angle has changed
by delta in either direction.

Infrared Sensor

	
class ev3dev2.sensor.lego.InfraredSensor(address=None, name_pattern='sensor*', name_exact=False, **kwargs)

	Bases: ev3dev2.sensor.Sensor, ev3dev2.button.ButtonBase

LEGO EV3 infrared sensor.

	
MODE_IR_PROX = 'IR-PROX'

	Proximity

	
MODE_IR_SEEK = 'IR-SEEK'

	IR Seeker

	
MODE_IR_REMOTE = 'IR-REMOTE'

	IR Remote Control

	
MODE_IR_REM_A = 'IR-REM-A'

	IR Remote Control. State of the buttons is coded in binary

	
MODE_IR_CAL = 'IR-CAL'

	Calibration ???

	
on_channel1_top_left = None

	Handler for top-left button events on channel 1. See InfraredSensor.process().

	
on_channel1_bottom_left = None

	Handler for bottom-left button events on channel 1. See InfraredSensor.process().

	
on_channel1_top_right = None

	Handler for top-right button events on channel 1. See InfraredSensor.process().

	
on_channel1_bottom_right = None

	Handler for bottom-right button events on channel 1. See InfraredSensor.process().

	
on_channel1_beacon = None

	Handler for beacon button events on channel 1. See InfraredSensor.process().

	
on_channel2_top_left = None

	Handler for top-left button events on channel 2. See InfraredSensor.process().

	
on_channel2_bottom_left = None

	Handler for bottom-left button events on channel 2. See InfraredSensor.process().

	
on_channel2_top_right = None

	Handler for top-right button events on channel 2. See InfraredSensor.process().

	
on_channel2_bottom_right = None

	Handler for bottom-right button events on channel 2. See InfraredSensor.process().

	
on_channel2_beacon = None

	Handler for beacon button events on channel 2. See InfraredSensor.process().

	
on_channel3_top_left = None

	Handler for top-left button events on channel 3. See InfraredSensor.process().

	
on_channel3_bottom_left = None

	Handler for bottom-left button events on channel 3. See InfraredSensor.process().

	
on_channel3_top_right = None

	Handler for top-right button events on channel 3. See InfraredSensor.process().

	
on_channel3_bottom_right = None

	Handler for bottom-right button events on channel 3. See InfraredSensor.process().

	
on_channel3_beacon = None

	Handler for beacon button events on channel 3. See InfraredSensor.process().

	
on_channel4_top_left = None

	Handler for top-left button events on channel 4. See InfraredSensor.process().

	
on_channel4_bottom_left = None

	Handler for bottom-left button events on channel 4. See InfraredSensor.process().

	
on_channel4_top_right = None

	Handler for top-right button events on channel 4. See InfraredSensor.process().

	
on_channel4_bottom_right = None

	Handler for bottom-right button events on channel 4. See InfraredSensor.process().

	
on_channel4_beacon = None

	Handler for beacon button events on channel 4. See InfraredSensor.process().

	
proximity

	An estimate of the distance between the sensor and objects in front of
it, as a percentage. 100% is approximately 70cm/27in.

	
heading(channel=1)

	Returns heading (-25, 25) to the beacon on the given channel.

	
distance(channel=1)

	Returns distance (0, 100) to the beacon on the given channel.
Returns None when beacon is not found.

	
heading_and_distance(channel=1)

	Returns heading and distance to the beacon on the given channel as a
tuple.

	
top_left(channel=1)

	Checks if top_left button is pressed.

	
bottom_left(channel=1)

	Checks if bottom_left button is pressed.

	
top_right(channel=1)

	Checks if top_right button is pressed.

	
bottom_right(channel=1)

	Checks if bottom_right button is pressed.

	
beacon(channel=1)

	Checks if beacon button is pressed.

	
buttons_pressed(channel=1)

	Returns list of currently pressed buttons.

Note that the sensor can only identify up to two buttons pressed at once.

	
process()

	Check for currenly pressed buttons. If the new state differs from the
old state, call the appropriate button event handlers.

To use the on_channel1_top_left, etc handlers your program would do something like:

def top_left_channel_1_action(state):
 print("top left on channel 1: %s" % state)

def bottom_right_channel_4_action(state):
 print("bottom right on channel 4: %s" % state)

ir = InfraredSensor()
ir.on_channel1_top_left = top_left_channel_1_action
ir.on_channel4_bottom_right = bottom_right_channel_4_action

while True:
 ir.process()
 time.sleep(0.01)

Sound Sensor

	
class ev3dev2.sensor.lego.SoundSensor(address=None, name_pattern='sensor*', name_exact=False, **kwargs)

	Bases: ev3dev2.sensor.Sensor

LEGO NXT Sound Sensor

	
MODE_DB = 'DB'

	Sound pressure level. Flat weighting

	
MODE_DBA = 'DBA'

	Sound pressure level. A weighting

	
sound_pressure

	A measurement of the measured sound pressure level, as a
percent. Uses a flat weighting.

	
sound_pressure_low

	A measurement of the measured sound pressure level, as a
percent. Uses A-weighting, which focuses on levels up to 55 dB.

Light Sensor

	
class ev3dev2.sensor.lego.LightSensor(address=None, name_pattern='sensor*', name_exact=False, **kwargs)

	Bases: ev3dev2.sensor.Sensor

LEGO NXT Light Sensor

	
MODE_REFLECT = 'REFLECT'

	Reflected light. LED on

	
MODE_AMBIENT = 'AMBIENT'

	Ambient light. LED off

	
reflected_light_intensity

	A measurement of the reflected light intensity, as a percentage.

	
ambient_light_intensity

	A measurement of the ambient light intensity, as a percentage.

Base “Sensor”

This is the base class all the other sensor classes are derived from. You
generally want to use one of the other classes instead, but if your sensor
doesn’t have a dedicated class, this is will let you interface with it as a
generic device.

	
class ev3dev2.sensor.Sensor(address=None, name_pattern='sensor*', name_exact=False, **kwargs)

	The sensor class provides a uniform interface for using most of the
sensors available for the EV3.

	
address

	Returns the name of the port that the sensor is connected to, e.g. ev3:in1.
I2C sensors also include the I2C address (decimal), e.g. ev3:in1:i2c8.

	
command

	Sends a command to the sensor.

	
commands

	Returns a list of the valid commands for the sensor.
Returns -EOPNOTSUPP if no commands are supported.

	
decimals

	Returns the number of decimal places for the values in the value<N>
attributes of the current mode.

	
driver_name

	Returns the name of the sensor device/driver. See the list of [supported
sensors] for a complete list of drivers.

	
mode

	Returns the current mode. Writing one of the values returned by modes
sets the sensor to that mode.

	
modes

	Returns a list of the valid modes for the sensor.

	
num_values

	Returns the number of value<N> attributes that will return a valid value
for the current mode.

	
units

	Returns the units of the measured value for the current mode. May return
empty string

	
value(n=0)

	Returns the value or values measured by the sensor. Check num_values to
see how many values there are. Values with N >= num_values will return
an error. The values are fixed point numbers, so check decimals to see
if you need to divide to get the actual value.

	
bin_data_format

	Returns the format of the values in bin_data for the current mode.
Possible values are:

	u8: Unsigned 8-bit integer (byte)

	s8: Signed 8-bit integer (sbyte)

	u16: Unsigned 16-bit integer (ushort)

	s16: Signed 16-bit integer (short)

	s16_be: Signed 16-bit integer, big endian

	s32: Signed 32-bit integer (int)

	float: IEEE 754 32-bit floating point (float)

	
bin_data(fmt=None)

	Returns the unscaled raw values in the value<N> attributes as raw byte
array. Use bin_data_format, num_values and the individual sensor
documentation to determine how to interpret the data.

Use fmt to unpack the raw bytes into a struct.

Example:

>>> from ev3dev2.sensor.lego import InfraredSensor
>>> ir = InfraredSensor()
>>> ir.value()
28
>>> ir.bin_data('<b')
(28,)

Button

	
class ev3dev2.button.Button

	EV3 Buttons

Event handlers

These will be called when state of the corresponding button is changed:

	
on_up

	

	
on_down

	

	
on_left

	

	
on_right

	

	
on_enter

	

	
on_backspace

	

Member functions and properties

	
buttons_pressed

	Returns list of names of pressed buttons.

	
any()

	Checks if any button is pressed.

	
backspace

	Check if ‘backspace’ button is pressed.

	
check_buttons(buttons=[])

	Check if currently pressed buttons exactly match the given list.

	
down

	Check if ‘down’ button is pressed.

	
enter

	Check if ‘enter’ button is pressed.

	
evdev_device

	Return our corresponding evdev device object

	
left

	Check if ‘left’ button is pressed.

	
static on_change(changed_buttons)

	This handler is called by process() whenever state of any button has
changed since last process() call. changed_buttons is a list of
tuples of changed button names and their states.

	
process(new_state=None)

	Check for currenly pressed buttons. If the new state differs from the
old state, call the appropriate button event handlers (on_up, on_down, etc).

	
right

	Check if ‘right’ button is pressed.

	
up

	Check if ‘up’ button is pressed.

	
wait_for_bump(buttons, timeout_ms=None)

	Wait for the button to be pressed down and then released.
Both actions must happen within timeout_ms.

	
wait_for_pressed(buttons, timeout_ms=None)

	Wait for the button to be pressed down.

	
wait_for_released(buttons, timeout_ms=None)

	Wait for the button to be released.

Leds

	
class ev3dev2.led.Led(name_pattern='*', name_exact=False, desc=None, **kwargs)

	Any device controlled by the generic LED driver.
See https://www.kernel.org/doc/Documentation/leds/leds-class.txt
for more details.

	
max_brightness

	Returns the maximum allowable brightness value.

	
brightness

	Sets the brightness level. Possible values are from 0 to max_brightness.

	
triggers

	Returns a list of available triggers.

	
trigger

	Sets the LED trigger. A trigger is a kernel based source of LED events.
Triggers can either be simple or complex. A simple trigger isn’t
configurable and is designed to slot into existing subsystems with
minimal additional code. Examples are the ide-disk and nand-disk
triggers.

Complex triggers whilst available to all LEDs have LED specific
parameters and work on a per LED basis. The timer trigger is an example.
The timer trigger will periodically change the LED brightness between
0 and the current brightness setting. The on and off time can
be specified via delay_{on,off} attributes in milliseconds.
You can change the brightness value of a LED independently of the timer
trigger. However, if you set the brightness value to 0 it will
also disable the timer trigger.

	
delay_on

	The timer trigger will periodically change the LED brightness between
0 and the current brightness setting. The on time can
be specified via delay_on attribute in milliseconds.

	
delay_off

	The timer trigger will periodically change the LED brightness between
0 and the current brightness setting. The off time can
be specified via delay_off attribute in milliseconds.

	
brightness_pct

	Returns LED brightness as a fraction of max_brightness

	
class ev3dev2.led.Leds

	
	
set_color(group, color, pct=1)

	Sets brightness of LEDs in the given group to the values specified in
color tuple. When percentage is specified, brightness of each LED is
reduced proportionally.

Example:

my_leds = Leds()
my_leds.set_color('LEFT', 'AMBER')

With a custom color:

my_leds = Leds()
my_leds.set_color('LEFT', (0.5, 0.3))

	
set(group, **kwargs)

	Set attributes for each LED in group.

Example:

my_leds = Leds()
my_leds.set_color('LEFT', brightness_pct=0.5, trigger='timer')

	
all_off()

	Turn all LEDs off

	
reset()

	Put all LEDs back to their default color

	
animate_stop()

	Signal the current animation thread to exit and wait for it to exit

	
animate_police_lights(color1, color2, group1='LEFT', group2='RIGHT', sleeptime=0.5, duration=5, block=True)

	Cycle the group1 and group2 LEDs between color1 and color2
to give the effect of police lights. Alternate the group1 and group2
LEDs every sleeptime seconds.

Animate for duration seconds. If duration is None animate for forever.

Example:

from ev3dev2.led import Leds
leds = Leds()
leds.animate_police_lights('RED', 'GREEN', sleeptime=0.75, duration=10)

	
animate_flash(color, groups=('LEFT', 'RIGHT'), sleeptime=0.5, duration=5, block=True)

	Turn all LEDs in groups off/on to color every sleeptime seconds

Animate for duration seconds. If duration is None animate for forever.

Example:

from ev3dev2.led import Leds
leds = Leds()
leds.animate_flash('AMBER', sleeptime=0.75, duration=10)

	
animate_cycle(colors, groups=('LEFT', 'RIGHT'), sleeptime=0.5, duration=5, block=True)

	Cycle groups LEDs through colors. Do this in a loop where
we display each color for sleeptime seconds.

Animate for duration seconds. If duration is None animate for forever.

Example:

from ev3dev2.led import Leds
leds = Leds()
leds.animate_cyle(('RED', 'GREEN', 'AMBER'))

	
animate_rainbow(group1='LEFT', group2='RIGHT', increment_by=0.1, sleeptime=0.1, duration=5, block=True)

	Gradually fade from one color to the next

Animate for duration seconds. If duration is None animate for forever.

Example:

from ev3dev2.led import Leds
leds = Leds()
leds.animate_rainbow()

LED group and color names

EV3 platform

Led groups:

	LEFT

	RIGHT

Colors:

	BLACK

	RED

	GREEN

	AMBER

	ORANGE

	YELLOW

BrickPI platform

Led groups:

	LED1

	LED2

Colors:

	BLACK

	BLUE

BrickPI3 platform

Led groups:

	LED

Colors:

	BLACK

	BLUE

PiStorms platform

Led groups:

	LEFT

	RIGHT

Colors:

	BLACK

	RED

	GREEN

	BLUE

	YELLOW

	CYAN

	MAGENTA

EVB platform

None.

Power Supply

	
class ev3dev2.power.PowerSupply(address=None, name_pattern='*', name_exact=False, **kwargs)

	A generic interface to read data from the system’s power_supply class.
Uses the built-in legoev3-battery if none is specified.

	
measured_current

	The measured current that the battery is supplying (in microamps)

	
measured_voltage

	The measured voltage that the battery is supplying (in microvolts)

	
max_voltage

	

	
min_voltage

	

	
technology

	

	
type

	

	
measured_amps

	The measured current that the battery is supplying (in amps)

	
measured_volts

	The measured voltage that the battery is supplying (in volts)

Sound

	
class ev3dev2.sound.Sound

	Support beep, play wav files, or convert text to speech.

Examples:

Play 'bark.wav':
Sound.play_file('bark.wav')

Introduce yourself:
Sound.speak('Hello, I am Robot')

Play a small song
Sound.play_song((
 ('D4', 'e3'),
 ('D4', 'e3'),
 ('D4', 'e3'),
 ('G4', 'h'),
 ('D5', 'h')
))

In order to mimic EV3-G API parameters, durations used in methods
exposed as EV3-G blocks for sound related operations are expressed
as a float number of seconds.

	
PLAY_WAIT_FOR_COMPLETE = 0

	Play the sound and block until it is complete

	
PLAY_NO_WAIT_FOR_COMPLETE = 1

	Start playing the sound but return immediately

	
PLAY_LOOP = 2

	Never return; start the sound immediately after it completes, until the program is killed

	
beep(args='', play_type=0)

	Call beep command with the provided arguments (if any).
See beep man page [https://linux.die.net/man/1/beep] and google linux beep music [https://www.google.com/search?q=linux+beep+music] for inspiration.

	Parameters

	
	args (string) – Any additional arguments to be passed to beep (see the beep man page [https://linux.die.net/man/1/beep] for details)

	play_type (Sound.PLAY_WAIT_FOR_COMPLETE or Sound.PLAY_NO_WAIT_FOR_COMPLETE) – The behavior of beep once playback has been initiated

	Returns

	When python3 is used and Sound.PLAY_NO_WAIT_FOR_COMPLETE is specified, returns the returns the spawn subprocess from subprocess.Popen; None otherwise

	
tone(*args, play_type=0)

	tone(tone_sequence)

Play tone sequence.

Here is a cheerful example:

my_sound = Sound()
my_sound.tone([
 (392, 350, 100), (392, 350, 100), (392, 350, 100), (311.1, 250, 100),
 (466.2, 25, 100), (392, 350, 100), (311.1, 250, 100), (466.2, 25, 100),
 (392, 700, 100), (587.32, 350, 100), (587.32, 350, 100),
 (587.32, 350, 100), (622.26, 250, 100), (466.2, 25, 100),
 (369.99, 350, 100), (311.1, 250, 100), (466.2, 25, 100), (392, 700, 100),
 (784, 350, 100), (392, 250, 100), (392, 25, 100), (784, 350, 100),
 (739.98, 250, 100), (698.46, 25, 100), (659.26, 25, 100),
 (622.26, 25, 100), (659.26, 50, 400), (415.3, 25, 200), (554.36, 350, 100),
 (523.25, 250, 100), (493.88, 25, 100), (466.16, 25, 100), (440, 25, 100),
 (466.16, 50, 400), (311.13, 25, 200), (369.99, 350, 100),
 (311.13, 250, 100), (392, 25, 100), (466.16, 350, 100), (392, 250, 100),
 (466.16, 25, 100), (587.32, 700, 100), (784, 350, 100), (392, 250, 100),
 (392, 25, 100), (784, 350, 100), (739.98, 250, 100), (698.46, 25, 100),
 (659.26, 25, 100), (622.26, 25, 100), (659.26, 50, 400), (415.3, 25, 200),
 (554.36, 350, 100), (523.25, 250, 100), (493.88, 25, 100),
 (466.16, 25, 100), (440, 25, 100), (466.16, 50, 400), (311.13, 25, 200),
 (392, 350, 100), (311.13, 250, 100), (466.16, 25, 100),
 (392.00, 300, 150), (311.13, 250, 100), (466.16, 25, 100), (392, 700)
])

Have also a look at play_song() for a more musician-friendly way of doing, which uses
the conventional notation for notes and durations.

	Parameters

	
	tone_sequence (list[tuple(float,float,float)]) – The sequence of tones to play. The first number of each tuple is frequency in Hz, the second is duration in milliseconds, and the third is delay in milliseconds between this and the next tone in the sequence.

	play_type (Sound.PLAY_WAIT_FOR_COMPLETE or Sound.PLAY_NO_WAIT_FOR_COMPLETE) – The behavior of tone once playback has been initiated

	Returns

	When python3 is used and Sound.PLAY_NO_WAIT_FOR_COMPLETE is specified, returns the returns the spawn subprocess from subprocess.Popen; None otherwise

tone(frequency, duration)

Play single tone of given frequency and duration.

	Parameters

	
	frequency (float) – The frequency of the tone in Hz

	duration (float) – The duration of the tone in milliseconds

	play_type (Sound.PLAY_WAIT_FOR_COMPLETE or Sound.PLAY_NO_WAIT_FOR_COMPLETE) – The behavior of tone once playback has been initiated

	Returns

	When python3 is used and Sound.PLAY_NO_WAIT_FOR_COMPLETE is specified, returns the returns the spawn subprocess from subprocess.Popen; None otherwise

	
play_tone(frequency, duration, delay=0.0, volume=100, play_type=0)

	Play a single tone, specified by its frequency, duration, volume and final delay.

	Parameters

	
	frequency (int) – the tone frequency, in Hertz

	duration (float) – Tone duration, in seconds

	delay (float) – Delay after tone, in seconds (can be useful when chaining calls to play_tone)

	volume (int) – The play volume, in percent of maximum volume

	play_type (Sound.PLAY_WAIT_FOR_COMPLETE, Sound.PLAY_NO_WAIT_FOR_COMPLETE or Sound.PLAY_LOOP) – The behavior of play_tone once playback has been initiated

	Returns

	When python3 is used and Sound.PLAY_NO_WAIT_FOR_COMPLETE is specified, returns the PID of the underlying beep command; None otherwise

	Raises

	ValueError – if invalid parameter

	
play_note(note, duration, volume=100, play_type=0)

	Plays a note, given by its name as defined in _NOTE_FREQUENCIES.

	Parameters

	
	note (string) – The note symbol with its octave number

	duration (float) – Tone duration, in seconds

	volume (int) – The play volume, in percent of maximum volume

	play_type (Sound.PLAY_WAIT_FOR_COMPLETE, Sound.PLAY_NO_WAIT_FOR_COMPLETE or Sound.PLAY_LOOP) – The behavior of play_note once playback has been initiated

	Returns

	When python3 is used and Sound.PLAY_NO_WAIT_FOR_COMPLETE is specified, returns the PID of the underlying beep command; None otherwise

	Raises

	ValueError – is invalid parameter (note, duration,…)

	
play_file(wav_file, volume=100, play_type=0)

	Play a sound file (wav format) at a given volume.

	Parameters

	
	wav_file (string) – The sound file path

	volume (int) – The play volume, in percent of maximum volume

	play_type (Sound.PLAY_WAIT_FOR_COMPLETE, Sound.PLAY_NO_WAIT_FOR_COMPLETE or Sound.PLAY_LOOP) – The behavior of play_file once playback has been initiated

	Returns

	When python3 is used and Sound.PLAY_NO_WAIT_FOR_COMPLETE is specified, returns the spawn subprocess from subprocess.Popen; None otherwise

	
speak(text, espeak_opts='-a 200 -s 130', volume=100, play_type=0)

	Speak the given text aloud.

Uses the espeak external command.

	Parameters

	
	text (string) – The text to speak

	espeak_opts (string) – espeak command options (advanced usage)

	volume (int) – The play volume, in percent of maximum volume

	play_type (Sound.PLAY_WAIT_FOR_COMPLETE, Sound.PLAY_NO_WAIT_FOR_COMPLETE or Sound.PLAY_LOOP) – The behavior of speak once playback has been initiated

	Returns

	When python3 is used and Sound.PLAY_NO_WAIT_FOR_COMPLETE is specified, returns the spawn subprocess from subprocess.Popen; None otherwise

	
set_volume(pct, channel=None)

	Sets the sound volume to the given percentage [0-100] by calling
amixer -q set <channel> <pct>%.
If the channel is not specified, it tries to determine the default one
by running amixer scontrols. If that fails as well, it uses the
Playback channel, as that is the only channel on the EV3.

	
get_volume(channel=None)

	Gets the current sound volume by parsing the output of
amixer get <channel>.
If the channel is not specified, it tries to determine the default one
by running amixer scontrols. If that fails as well, it uses the
Playback channel, as that is the only channel on the EV3.

	
play_song(song, tempo=120, delay=0.05)

	Plays a song provided as a list of tuples containing the note name and its
value using music conventional notation instead of numerical values for frequency
and duration.

It supports symbolic notes (e.g. A4, D#3, Gb5) and durations (e.g. q, h).

For an exhaustive list of accepted note symbols and values, have a look at the _NOTE_FREQUENCIES
and _NOTE_VALUES private dictionaries in the source code.

The value can be suffixed by modifiers:

	a divider introduced by a / to obtain triplets for instance
(e.g. q/3 for a triplet of eight note)

	a multiplier introduced by * (e.g. *1.5 is a dotted note).

Shortcuts exist for common modifiers:

	3 produces a triplet member note. For instance e3 gives a triplet of eight notes,
i.e. 3 eight notes in the duration of a single quarter. You must ensure that 3 triplets
notes are defined in sequence to match the count, otherwise the result will not be the
expected one.

	. produces a dotted note, i.e. which duration is one and a half the base one. Double dots
are not currently supported.

Example:

>>> # A long time ago in a galaxy far,
>>> # far away...
>>> Sound.play_song((
>>> ('D4', 'e3'), # intro anacrouse
>>> ('D4', 'e3'),
>>> ('D4', 'e3'),
>>> ('G4', 'h'), # meas 1
>>> ('D5', 'h'),
>>> ('C5', 'e3'), # meas 2
>>> ('B4', 'e3'),
>>> ('A4', 'e3'),
>>> ('G5', 'h'),
>>> ('D5', 'q'),
>>> ('C5', 'e3'), # meas 3
>>> ('B4', 'e3'),
>>> ('A4', 'e3'),
>>> ('G5', 'h'),
>>> ('D5', 'q'),
>>> ('C5', 'e3'), # meas 4
>>> ('B4', 'e3'),
>>> ('C5', 'e3'),
>>> ('A4', 'h.'),
>>>))

Important

Only 4/4 signature songs are supported with respect to note durations.

	Parameters

	
	song (iterable[tuple(string,string)]) – the song

	tempo (int) – the song tempo, given in quarters per minute

	delay (float) – delay between notes (in seconds)

	Returns

	When python3 is used the spawn subprocess from subprocess.Popen is returned; None otherwise

	Raises

	ValueError – if invalid note in song or invalid play parameters

Display

	
class ev3dev2.display.Display(desc='Display')

	Bases: ev3dev2.display.FbMem

A convenience wrapper for the FbMem class.
Provides drawing functions from the python imaging library (PIL).

	
xres

	Horizontal screen resolution

	
yres

	Vertical screen resolution

	
shape

	Dimensions of the screen.

	
draw

	Returns a handle to PIL.ImageDraw.Draw class associated with the screen.

Example:

screen.draw.rectangle((10,10,60,20), fill='black')

	
image

	Returns a handle to PIL.Image class that is backing the screen. This can
be accessed for blitting images to the screen.

Example:

screen.image.paste(picture, (0, 0))

	
clear()

	Clears the screen

	
update()

	Applies pending changes to the screen.
Nothing will be drawn on the screen until this function is called.

	
line(clear_screen=True, x1=10, y1=10, x2=50, y2=50, line_color='black', width=1)

	Draw a line from (x1, y1) to (x2, y2)

	
circle(clear_screen=True, x=50, y=50, radius=40, fill_color='black', outline_color='black')

	Draw a circle of ‘radius’ centered at (x, y)

	
rectangle(clear_screen=True, x1=10, y1=10, x2=80, y2=40, fill_color='black', outline_color='black')

	Draw a rectangle where the top left corner is at (x1, y1) and the
bottom right corner is at (x2, y2)

	
point(clear_screen=True, x=10, y=10, point_color='black')

	Draw a single pixel at (x, y)

	
text_pixels(text, clear_screen=True, x=0, y=0, text_color='black', font=None)

	Display text starting at pixel (x, y).

The EV3 display is 178x128 pixels

	(0, 0) would be the top left corner of the display

	(89, 64) would be right in the middle of the display

‘text_color’ : PIL says it supports “common HTML color names”. There
are 140 HTML color names listed here that are supported by all modern
browsers. This is probably a good list to start with.
https://www.w3schools.com/colors/colors_names.asp

	‘font’can be any font displayed here

	http://ev3dev-lang.readthedocs.io/projects/python-ev3dev/en/ev3dev-stretch/display.html#bitmap-fonts

	If font is a string, it is the name of a font to be loaded.

	If font is a Font object, returned from ev3dev2.fonts.load(), then it is
used directly. This is desirable for faster display times.

	
text_grid(text, clear_screen=True, x=0, y=0, text_color='black', font=None)

	Display ‘text’ starting at grid (x, y)

The EV3 display can be broken down in a grid that is 22 columns wide
and 12 rows tall. Each column is 8 pixels wide and each row is 10
pixels tall.

‘text_color’ : PIL says it supports “common HTML color names”. There
are 140 HTML color names listed here that are supported by all modern
browsers. This is probably a good list to start with.
https://www.w3schools.com/colors/colors_names.asp

	‘font’can be any font displayed here

	http://ev3dev-lang.readthedocs.io/projects/python-ev3dev/en/ev3dev-stretch/display.html#bitmap-fonts

	If font is a string, it is the name of a font to be loaded.

	If font is a Font object, returned from ev3dev2.fonts.load(), then it is
used directly. This is desirable for faster display times.

Bitmap fonts

The ev3dev2.display.Display class allows to write text on the LCD using python
imaging library (PIL) interface (see description of the text() method
here [http://pillow.readthedocs.io/en/3.1.x/reference/ImageDraw.html#PIL.ImageDraw.PIL.ImageDraw.Draw.text]).
The ev3dev2.fonts module contains bitmap fonts in PIL format that should
look good on a tiny EV3 screen:

import ev3dev2.fonts as fonts
display.draw.text((10,10), 'Hello World!', font=fonts.load('luBS14'))

	
ev3dev2.fonts.available()

	Returns list of available font names.

	
ev3dev2.fonts.load(name)

	Loads the font specified by name and returns it as an instance of
PIL.ImageFont [http://pillow.readthedocs.io/en/latest/reference/ImageFont.html]
class.

The following image lists all available fonts. The grid lines correspond
to EV3 screen size:

[image: _images/fonts.png]

Console

	
class ev3dev2.console.Console(font='Lat15-TerminusBold24x12')

	A class that represents the EV3 LCD console, which implements ANSI codes
for cursor positioning, text color, and resetting the screen. Supports changing
the console font using standard system fonts.

	
columns

	Return (int) number of columns on the EV3 LCD console supported by the current font.

	
rows

	Return (int) number of rows on the EV3 LCD console supported by the current font.

	
echo

	Return (bool) whether the console echo mode is enabled.

	
cursor

	Return (bool) whether the console cursor is visible.

	
text_at(text, column=1, row=1, reset_console=False, inverse=False, alignment='L')

	Display text (string) at grid position (column, row).
Note that the grid locations are 1-based (not 0-based).

Depending on the font, the number of columns and rows supported by the EV3 LCD console
can vary. Large fonts support as few as 11 columns and 4 rows, while small fonts support
44 columns and 21 rows. The default font for the Console() class results in a grid that
is 14 columns and 5 rows.

Using the inverse=True parameter will display the text with more emphasis and contrast,
as the background of the text will be black, and the foreground is white. Using inverse
can help in certain situations, such as to indicate when a color sensor senses
black, or the gyro sensor is pointing to zero.

Use the alignment parameter to enable the function to align the text differently to the
column/row values passed-in. Use L for left-alignment (default), where the first character
in the text will show at the column/row position. Use R for right-alignment, where the
last character will show at the column/row position. Use C for center-alignment, where the
text string will centered at the column/row position (as close as possible using integer
division–odd-length text string will center better than even-length).

Parameters:

	text (string): Text to display

	column (int): LCD column position to start the text (1 = left column);
text will wrap when it reaches the right edge

	row (int): LCD row position to start the text (1 = top row)

	reset_console (bool): True to reset the EV3 LCD console before showing
the text; default is False

	inverse (bool): True for white on black, otherwise black on white;
default is False

	alignment (string): Align the text horizontally. Use L for left-alignment (default),
R for right-alignment, or C for center-alignment

	
set_font(font='Lat15-TerminusBold24x12', reset_console=True)

	Set the EV3 LCD console font and optionally reset the EV3 LCD console
to clear it and turn off the cursor.

Parameters:

	font (string): Font name, as found in /usr/share/consolefonts/

	reset_console (bool): True to reset the EV3 LCD console
after the font change; default is True

	
clear_to_eol(column=None, row=None)

	Clear to the end of line from the column and row position
on the EV3 LCD console. Default to current cursor position.

Parameters:

	column (int): LCD column position to move to before clearing

	row (int): LCD row position to move to before clearing

	
reset_console()

	Clear the EV3 LCD console using ANSI codes, and move the cursor to 1,1

Examples:

#!/usr/bin/env micropython
from ev3dev2.console import Console

create a Console instance, which uses the default font
console = Console()

reset the console to clear it, home the cursor at 1,1, and then turn off the cursor
console.reset_console()

display 'Hello World!' at row 5, column 1 in inverse, but reset the EV3 LCD console first
console.text_at('Hello World!', column=1, row=5, reset_console=True, inverse=True)

#!/usr/bin/env micropython
from time import sleep
from ev3dev2.sensor import INPUT_1, INPUT_2, INPUT_3
from ev3dev2.console import Console
from ev3dev2.sensor.lego import GyroSensor, ColorSensor

console = Console()
gyro = GyroSensor(INPUT_1)
gyro.mode = GyroSensor.MODE_GYRO_ANG
color_sensor_left = ColorSensor(INPUT_2)
color_sensor_right = ColorSensor(INPUT_3)

show the gyro angle and reflected light intensity for both of our color sensors
while True:
 angle = gyro.angle
 left = color_sensor_left.reflected_light_intensity
 right = color_sensor_right.reflected_light_intensity

 # show angle; in inverse color when pointing at 0
 console.text_at("G: %03d" % (angle), column=5, row=1, reset_console=True, inverse=(angle == 0))

 # show light intensity values; in inverse when 'dark'
 console.text_at("L: %02d" % (left), column=0, row=3, reset_console=False, inverse=(left < 10))
 console.text_at("R: %02d" % (right), column=10, row=3, reset_console=False, inverse=(right < 10))

 sleep(0.5)

Console fonts

The ev3dev2.console.Console class displays text on the LCD console
using ANSI codes in various system console fonts. The system console fonts are
located in /usr/share/consolefonts.

Font filenames consist of the codeset, font face and font size. The codeset
specifies the characters supported. The font face determines the look of the
font. Each font face is available in multiple sizes.

For Codeset information, see
<https://www.systutorials.com/docs/linux/man/5-console-setup/#lbAP>.

Note: Terminus fonts are “thinner”; TerminusBold and VGA offer more
contrast on the LCD console and are thus more readable; the TomThumb font is
too small to read!

Depending on the font used, the EV3 LCD console will support various maximum
rows and columns, as follows for the Lat15 fonts. See
utils/console_fonts.py to discover fonts and their resulting rows/columns.
These fonts are listed in larger-to-smaller size order:

	LCD Rows

	LCD Columns

	Font

	4

	11

	Lat15-Terminus32x16.psf.gz

	4

	11

	Lat15-TerminusBold32x16.psf.gz

	4

	11

	Lat15-VGA28x16.psf.gz

	4

	11

	Lat15-VGA32x16.psf.gz

	4

	12

	Lat15-Terminus28x14.psf.gz

	4

	12

	Lat15-TerminusBold28x14.psf.gz

	5

	14

	Lat15-Terminus24x12.psf.gz

	5

	14

	Lat15-TerminusBold24x12.psf.gz

	5

	16

	Lat15-Terminus22x11.psf.gz

	5

	16

	Lat15-TerminusBold22x11.psf.gz

	6

	17

	Lat15-Terminus20x10.psf.gz

	6

	17

	Lat15-TerminusBold20x10.psf.gz

	7

	22

	Lat15-Fixed18.psf.gz

	8

	22

	Lat15-Fixed15.psf.gz

	8

	22

	Lat15-Fixed16.psf.gz

	8

	22

	Lat15-Terminus16.psf.gz

	8

	22

	Lat15-TerminusBold16.psf.gz

	8

	22

	Lat15-TerminusBoldVGA16.psf.gz

	8

	22

	Lat15-VGA16.psf.gz

	9

	22

	Lat15-Fixed13.psf.gz

	9

	22

	Lat15-Fixed14.psf.gz

	9

	22

	Lat15-Terminus14.psf.gz

	9

	22

	Lat15-TerminusBold14.psf.gz

	9

	22

	Lat15-TerminusBoldVGA14.psf.gz

	9

	22

	Lat15-VGA14.psf.gz

	10

	29

	Lat15-Terminus12x6.psf.gz

	16

	22

	Lat15-VGA8.psf.gz

	21

	44

	Lat15-TomThumb4x6.psf.gz

Example:

#!/usr/bin/env micropython
from ev3dev2.console import Console

create a Console instance, which uses the default font
console = Console()

change the console font and reset the console to clear it and turn off the cursor
console.set_font('Lat15-TerminusBold16.psf.gz', True)

compute the middle of the console
mid_col = console.columns // 2
mid_row = console.rows // 2

display 'Hello World!' in the center of the LCD console
console.text_at('Hello World!', column=mid_col, row=mid_row, alignment="C")

Lego Port

The LegoPort class is only needed when manually reconfiguring input/output
ports. Most users can ignore this page.

	
class ev3dev2.port.LegoPort(address=None, name_pattern='*', name_exact=False, **kwargs)

	The lego-port class provides an interface for working with input and
output ports that are compatible with LEGO MINDSTORMS RCX/NXT/EV3, LEGO
WeDo and LEGO Power Functions sensors and motors. Supported devices include
the LEGO MINDSTORMS EV3 Intelligent Brick, the LEGO WeDo USB hub and
various sensor multiplexers from 3rd party manufacturers.

Some types of ports may have multiple modes of operation. For example, the
input ports on the EV3 brick can communicate with sensors using UART, I2C
or analog validate signals - but not all at the same time. Therefore there
are multiple modes available to connect to the different types of sensors.

In most cases, ports are able to automatically detect what type of sensor
or motor is connected. In some cases though, this must be manually specified
using the mode and set_device attributes. The mode attribute affects
how the port communicates with the connected device. For example the input
ports on the EV3 brick can communicate using UART, I2C or analog voltages,
but not all at the same time, so the mode must be set to the one that is
appropriate for the connected sensor. The set_device attribute is used to
specify the exact type of sensor that is connected. Note: the mode must be
correctly set before setting the sensor type.

Ports can be found at /sys/class/lego-port/port<N> where <N> is
incremented each time a new port is registered. Note: The number is not
related to the actual port at all - use the address attribute to find
a specific port.

	
address

	Returns the name of the port. See individual driver documentation for
the name that will be returned.

	
driver_name

	Returns the name of the driver that loaded this device. You can find the
complete list of drivers in the [list of port drivers].

	
modes

	Returns a list of the available modes of the port.

	
mode

	Reading returns the currently selected mode. Writing sets the mode.
Generally speaking when the mode changes any sensor or motor devices
associated with the port will be removed new ones loaded, however this
this will depend on the individual driver implementing this class.

	
set_device

	For modes that support it, writing the name of a driver will cause a new
device to be registered for that driver and attached to this port. For
example, since NXT/Analog sensors cannot be auto-detected, you must use
this attribute to load the correct driver. Returns -EOPNOTSUPP if setting a
device is not supported.

	
status

	In most cases, reading status will return the same value as mode. In
cases where there is an auto mode additional values may be returned,
such as no-device or error. See individual port driver documentation
for the full list of possible values.

Port names

Classes such as ev3dev2.motor.Motor and those based on
ev3dev2.sensor.Sensor accept parameters to specify which port the
target device is connected to. This parameter is typically caled address.

The following constants are available on all platforms:

Output

	ev3dev2.motor.OUTPUT_A

	ev3dev2.motor.OUTPUT_B

	ev3dev2.motor.OUTPUT_C

	ev3dev2.motor.OUTPUT_D

Input

	ev3dev2.sensor.INPUT_1

	ev3dev2.sensor.INPUT_2

	ev3dev2.sensor.INPUT_3

	ev3dev2.sensor.INPUT_4

Additionally, on BrickPi3, the ports of up to four stacked BrickPi’s can be
referenced as OUTPUT_E through OUTPUT_P and INPUT_5 through INPUT_16.

Example

from ev3dev2.motor import LargeMotor, OUTPUT_A, OUTPUT_B
from ev3dev2.sensor import INPUT_1
from ev3dev2.sensor.lego import TouchSensor

m = LargeMotor(OUTPUT_A)
s = TouchSensor(INPUT_1)

Wheels

All Wheel class units are in millimeters. The diameter and width for various lego wheels can be found at http://wheels.sariel.pl/

	
class ev3dev2.wheel.Wheel(diameter_mm, width_mm)

	A base class for various types of wheels, tires, etc. All units are in mm.

One scenario where one of the child classes below would be used is when the
user needs their robot to drive at a specific speed or drive for a specific
distance. Both of those calculations require the circumference of the wheel
of the robot.

Example:

from ev3dev2.wheel import EV3Tire

tire = EV3Tire()

calculate the number of rotations needed to travel forward 500 mm
rotations_for_500mm = 500 / tire.circumference_mm

EV3 Rim

	
class ev3dev2.wheel.EV3Rim

	Bases: ev3dev2.wheel.Wheel

part number 56145
comes in set 31313

EV3 Tire

	
class ev3dev2.wheel.EV3Tire

	Bases: ev3dev2.wheel.Wheel

part number 44309
comes in set 31313

EV3 Education Set Rim

	
class ev3dev2.wheel.EV3EducationSetRim

	Bases: ev3dev2.wheel.Wheel

part number 56908
comes in set 45544

EV3 Education Set Tire

	
class ev3dev2.wheel.EV3EducationSetTire

	Bases: ev3dev2.wheel.Wheel

part number 41897
comes in set 45544

Working with ev3dev remotely using RPyC

RPyC [http://rpyc.readthedocs.io/] (pronounced as are-pie-see), or Remote Python Call, is a transparent
python library for symmetrical remote procedure calls, clustering and
distributed-computing. RPyC makes use of object-proxying, a technique that
employs python’s dynamic nature, to overcome the physical boundaries between
processes and computers, so that remote objects can be manipulated as if they
were local. Here are simple steps you need to follow in order to install and
use RPyC with ev3dev:

	Install RPyC both on the EV3 and on your desktop PC. For the EV3, enter the
following command at the command prompt (after you connect with SSH [http://www.ev3dev.org/docs/tutorials/connecting-to-ev3dev-with-ssh/]):

sudo easy_install3 rpyc

On the desktop PC, it really depends on your operating system. In case it is
some flavor of linux, you should be able to do

sudo pip3 install rpyc

In case it is Windows, there is a win32 installer on the project’s
sourceforge page [http://sourceforge.net/projects/rpyc/files/main]. Also, have a look at the Download and Install [http://rpyc.readthedocs.io/en/latest/install.html] page
on their site.

	Create file rpyc_server.sh with the following contents on the EV3:

#!/bin/bash
python3 `which rpyc_classic.py`

and make the file executable:

chmod +x rpyc_server.sh

Launch the created file either from SSH session (with
./rpyc_server.sh command), or from brickman. It should output something
like

INFO:SLAVE/18812:server started on [0.0.0.0]:18812

and keep running.

	Now you are ready to connect to the RPyC server from your desktop PC. The
following python script should make a large motor connected to output port
A spin for a second.

import rpyc
conn = rpyc.classic.connect('ev3dev') # host name or IP address of the EV3
ev3 = conn.modules['ev3dev2.ev3'] # import ev3dev2.ev3 remotely
m = ev3.LargeMotor('outA')
m.run_timed(time_sp=1000, speed_sp=600)

You can run scripts like this from any interactive python environment, like
ipython shell/notebook, spyder, pycharm, etc.

Some advantages of using RPyC with ev3dev are:

	It uses much less resources than running ipython notebook on EV3; RPyC server
is lightweight, and only requires an IP connection to the EV3 once set up (no
ssh required).

	The scripts you are working with are actually stored and edited on your
desktop PC, with your favorite editor/IDE.

	Some robots may need much more computational power than what EV3 can give
you. A notable example is the Rubics cube solver: there is an algorithm that
provides almost optimal solution (in terms of number of cube rotations), but
it takes more RAM than is available on EV3. With RPYC, you could run the
heavy-duty computations on your desktop.

The most obvious disadvantage is latency introduced by network connection.
This may be a show stopper for robots where reaction speed is essential.

Frequently-Asked Questions

	Q: Why does my Python program exit quickly or immediately throw an error?

	A: This may occur if your file includes Windows-style line endings
(CRLF–carriage-return line-feed), which are often inserted by editors on
Windows. To resolve this issue, open an SSH session and run the following
command, replacing <file> with the name of the Python file you’re
using:

sed -i 's/\r//g' <file>

This will fix it for the copy of the file on the brick, but if you plan to edit
it again from Windows, you should configure your editor to use Unix-style
line endings (LF–line-feed). For PyCharm, you can find a guide on doing this
here [https://www.jetbrains.com/help/pycharm/2016.2/configuring-line-separators.html].
Most other editors have similar options; there may be an option for it in the
status bar at the bottom of the window or in the menu bar at the top.

	Q: Where can I learn more about the ev3dev operating system?

	A: ev3dev.org [http://ev3dev.org] is a great resource for finding guides and tutorials on
using ev3dev, straight from the maintainers.

	Q: How can I request support on the ev3dev2 Python library?

	A: If you are having trouble using this library, please open an issue
at our Issues tracker [https://github.com/ev3dev/ev3dev-lang-python/issues] so that we can help you. When opening an
issue, make sure to include as much information as possible about
what you are trying to do and what you have tried. The issue template
is in place to guide you through this process.

	Q: How can I upgrade the library on my EV3?

	A: You can upgrade this library from an Internet-connected EV3 with an
SSH shell as follows. Make sure to type the password
(the default is maker) when prompted.

sudo apt-get update
sudo apt-get install --only-upgrade python3-ev3dev2

	Q: Are there other useful Python modules to use on the EV3?

	A: The Python language has a package repository [https://pypi.python.org/pypi] where you can find
libraries that others have written, including the latest version of
this package [https://pypi.python.org/pypi/python-ev3dev2].

	Q: What compatibility issues are there with the different versions of Python?

	A: Some versions of the ev3dev [http://ev3dev.org] distribution come with
Python 2.x [https://docs.python.org/2/], Python 3.x [https://docs.python.org/3/], and micropython [http://python-ev3dev.readthedocs.io/en/ev3dev-stretch/micropython.html] installed,
but this library is compatible only with Python 3 and micropython.

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W
 | X
 | Y

A

 	
 	ActuonixL12100Motor (class in ev3dev2.motor)

 	ActuonixL1250Motor (class in ev3dev2.motor)

 	address (ev3dev2.motor.DcMotor attribute)

 	(ev3dev2.motor.Motor attribute)

 	(ev3dev2.motor.ServoMotor attribute)

 	(ev3dev2.port.LegoPort attribute)

 	(ev3dev2.sensor.Sensor attribute)

 	all_off() (ev3dev2.led.Leds method)

 	ambient_light_intensity (ev3dev2.sensor.lego.ColorSensor attribute)

 	(ev3dev2.sensor.lego.LightSensor attribute)

 	
 	angle (ev3dev2.sensor.lego.GyroSensor attribute)

 	angle_and_rate (ev3dev2.sensor.lego.GyroSensor attribute)

 	angle_to_speed_percentage() (ev3dev2.motor.MoveJoystick static method)

 	animate_cycle() (ev3dev2.led.Leds method)

 	animate_flash() (ev3dev2.led.Leds method)

 	animate_police_lights() (ev3dev2.led.Leds method)

 	animate_rainbow() (ev3dev2.led.Leds method)

 	animate_stop() (ev3dev2.led.Leds method)

 	any() (ev3dev2.button.Button method)

 	available() (in module ev3dev2.fonts)

B

 	
 	backspace (ev3dev2.button.Button attribute)

 	beacon() (ev3dev2.sensor.lego.InfraredSensor method)

 	beep() (ev3dev2.sound.Sound method)

 	bin_data() (ev3dev2.sensor.Sensor method)

 	bin_data_format (ev3dev2.sensor.Sensor attribute)

 	blue (ev3dev2.sensor.lego.ColorSensor attribute)

 	bottom_left() (ev3dev2.sensor.lego.InfraredSensor method)

 	bottom_right() (ev3dev2.sensor.lego.InfraredSensor method)

 	brightness (ev3dev2.led.Led attribute)

 	
 	brightness_pct (ev3dev2.led.Led attribute)

 	Button (class in ev3dev2.button)

 	Button.on_backspace (in module ev3dev2.button)

 	Button.on_down (in module ev3dev2.button)

 	Button.on_enter (in module ev3dev2.button)

 	Button.on_left (in module ev3dev2.button)

 	Button.on_right (in module ev3dev2.button)

 	Button.on_up (in module ev3dev2.button)

 	buttons_pressed (ev3dev2.button.Button attribute)

 	buttons_pressed() (ev3dev2.sensor.lego.InfraredSensor method)

C

 	
 	calibrate_white() (ev3dev2.sensor.lego.ColorSensor method)

 	check_buttons() (ev3dev2.button.Button method)

 	circle() (ev3dev2.display.Display method)

 	clear() (ev3dev2.display.Display method)

 	clear_to_eol() (ev3dev2.console.Console method)

 	color (ev3dev2.sensor.lego.ColorSensor attribute)

 	COLOR_BLACK (ev3dev2.sensor.lego.ColorSensor attribute)

 	COLOR_BLUE (ev3dev2.sensor.lego.ColorSensor attribute)

 	COLOR_BROWN (ev3dev2.sensor.lego.ColorSensor attribute)

 	COLOR_GREEN (ev3dev2.sensor.lego.ColorSensor attribute)

 	color_name (ev3dev2.sensor.lego.ColorSensor attribute)

 	COLOR_NOCOLOR (ev3dev2.sensor.lego.ColorSensor attribute)

 	COLOR_RED (ev3dev2.sensor.lego.ColorSensor attribute)

 	COLOR_WHITE (ev3dev2.sensor.lego.ColorSensor attribute)

 	COLOR_YELLOW (ev3dev2.sensor.lego.ColorSensor attribute)

 	ColorSensor (class in ev3dev2.sensor.lego)

 	columns (ev3dev2.console.Console attribute)

 	command (ev3dev2.motor.DcMotor attribute)

 	(ev3dev2.motor.Motor attribute)

 	(ev3dev2.motor.ServoMotor attribute)

 	(ev3dev2.sensor.Sensor attribute)

 	
 	COMMAND_FLOAT (ev3dev2.motor.ServoMotor attribute)

 	COMMAND_RESET (ev3dev2.motor.Motor attribute)

 	COMMAND_RUN (ev3dev2.motor.ServoMotor attribute)

 	COMMAND_RUN_DIRECT (ev3dev2.motor.DcMotor attribute)

 	(ev3dev2.motor.Motor attribute)

 	COMMAND_RUN_FOREVER (ev3dev2.motor.DcMotor attribute)

 	(ev3dev2.motor.Motor attribute)

 	COMMAND_RUN_TIMED (ev3dev2.motor.DcMotor attribute)

 	(ev3dev2.motor.Motor attribute)

 	COMMAND_RUN_TO_ABS_POS (ev3dev2.motor.Motor attribute)

 	COMMAND_RUN_TO_REL_POS (ev3dev2.motor.Motor attribute)

 	COMMAND_STOP (ev3dev2.motor.DcMotor attribute)

 	(ev3dev2.motor.Motor attribute)

 	commands (ev3dev2.motor.DcMotor attribute)

 	(ev3dev2.motor.Motor attribute)

 	(ev3dev2.sensor.Sensor attribute)

 	Console (class in ev3dev2.console)

 	count_per_m (ev3dev2.motor.Motor attribute)

 	count_per_rot (ev3dev2.motor.Motor attribute)

 	cursor (ev3dev2.console.Console attribute)

D

 	
 	DcMotor (class in ev3dev2.motor)

 	decimals (ev3dev2.sensor.Sensor attribute)

 	delay_off (ev3dev2.led.Led attribute)

 	delay_on (ev3dev2.led.Led attribute)

 	Device (class in ev3dev2)

 	Display (class in ev3dev2.display)

 	distance() (ev3dev2.sensor.lego.InfraredSensor method)

 	distance_centimeters (ev3dev2.sensor.lego.UltrasonicSensor attribute)

 	distance_centimeters_continuous (ev3dev2.sensor.lego.UltrasonicSensor attribute)

 	distance_centimeters_ping (ev3dev2.sensor.lego.UltrasonicSensor attribute)

 	distance_inches (ev3dev2.sensor.lego.UltrasonicSensor attribute)

 	distance_inches_continuous (ev3dev2.sensor.lego.UltrasonicSensor attribute)

 	
 	distance_inches_ping (ev3dev2.sensor.lego.UltrasonicSensor attribute)

 	down (ev3dev2.button.Button attribute)

 	draw (ev3dev2.display.Display attribute)

 	driver_name (ev3dev2.motor.DcMotor attribute)

 	(ev3dev2.motor.Motor attribute)

 	(ev3dev2.motor.ServoMotor attribute)

 	(ev3dev2.port.LegoPort attribute)

 	(ev3dev2.sensor.Sensor attribute)

 	duty_cycle (ev3dev2.motor.DcMotor attribute)

 	(ev3dev2.motor.Motor attribute)

 	duty_cycle_sp (ev3dev2.motor.DcMotor attribute)

 	(ev3dev2.motor.Motor attribute)

E

 	
 	echo (ev3dev2.console.Console attribute)

 	ENCODER_POLARITY_INVERSED (ev3dev2.motor.Motor attribute)

 	ENCODER_POLARITY_NORMAL (ev3dev2.motor.Motor attribute)

 	enter (ev3dev2.button.Button attribute)

 	
 	EV3EducationSetRim (class in ev3dev2.wheel)

 	EV3EducationSetTire (class in ev3dev2.wheel)

 	EV3Rim (class in ev3dev2.wheel)

 	EV3Tire (class in ev3dev2.wheel)

 	evdev_device (ev3dev2.button.Button attribute)

F

 	
 	float() (ev3dev2.motor.ServoMotor method)

 	
 	follow_line() (ev3dev2.motor.MoveTank method)

 	full_travel_count (ev3dev2.motor.Motor attribute)

G

 	
 	get_speed_steering() (ev3dev2.motor.MoveSteering method)

 	get_volume() (ev3dev2.sound.Sound method)

 	
 	green (ev3dev2.sensor.lego.ColorSensor attribute)

 	GyroSensor (class in ev3dev2.sensor.lego)

H

 	
 	heading() (ev3dev2.sensor.lego.InfraredSensor method)

 	heading_and_distance() (ev3dev2.sensor.lego.InfraredSensor method)

 	
 	hls (ev3dev2.sensor.lego.ColorSensor attribute)

 	hsv (ev3dev2.sensor.lego.ColorSensor attribute)

I

 	
 	image (ev3dev2.display.Display attribute)

 	InfraredSensor (class in ev3dev2.sensor.lego)

 	is_holding (ev3dev2.motor.Motor attribute)

 	is_overloaded (ev3dev2.motor.Motor attribute)

 	
 	is_pressed (ev3dev2.sensor.lego.TouchSensor attribute)

 	is_ramping (ev3dev2.motor.Motor attribute)

 	is_running (ev3dev2.motor.Motor attribute)

 	is_stalled (ev3dev2.motor.Motor attribute)

L

 	
 	lab (ev3dev2.sensor.lego.ColorSensor attribute)

 	LargeMotor (class in ev3dev2.motor)

 	Led (class in ev3dev2.led)

 	Leds (class in ev3dev2.led)

 	left (ev3dev2.button.Button attribute)

 	LegoPort (class in ev3dev2.port)

 	
 	LightSensor (class in ev3dev2.sensor.lego)

 	line() (ev3dev2.display.Display method)

 	list_device_names() (in module ev3dev2)

 	list_devices() (in module ev3dev2)

 	list_motors() (in module ev3dev2.motor)

 	list_sensors() (in module ev3dev2.sensor)

 	load() (in module ev3dev2.fonts)

M

 	
 	max_brightness (ev3dev2.led.Led attribute)

 	max_pulse_sp (ev3dev2.motor.ServoMotor attribute)

 	max_speed (ev3dev2.motor.Motor attribute)

 	max_voltage (ev3dev2.power.PowerSupply attribute)

 	measured_amps (ev3dev2.power.PowerSupply attribute)

 	measured_current (ev3dev2.power.PowerSupply attribute)

 	measured_voltage (ev3dev2.power.PowerSupply attribute)

 	measured_volts (ev3dev2.power.PowerSupply attribute)

 	MediumMotor (class in ev3dev2.motor)

 	mid_pulse_sp (ev3dev2.motor.ServoMotor attribute)

 	min_pulse_sp (ev3dev2.motor.ServoMotor attribute)

 	min_voltage (ev3dev2.power.PowerSupply attribute)

 	mode (ev3dev2.port.LegoPort attribute)

 	(ev3dev2.sensor.Sensor attribute)

 	MODE_AMBIENT (ev3dev2.sensor.lego.LightSensor attribute)

 	MODE_COL_AMBIENT (ev3dev2.sensor.lego.ColorSensor attribute)

 	MODE_COL_COLOR (ev3dev2.sensor.lego.ColorSensor attribute)

 	MODE_COL_REFLECT (ev3dev2.sensor.lego.ColorSensor attribute)

 	MODE_DB (ev3dev2.sensor.lego.SoundSensor attribute)

 	MODE_DBA (ev3dev2.sensor.lego.SoundSensor attribute)

 	MODE_GYRO_ANG (ev3dev2.sensor.lego.GyroSensor attribute)

 	MODE_GYRO_CAL (ev3dev2.sensor.lego.GyroSensor attribute)

 	MODE_GYRO_FAS (ev3dev2.sensor.lego.GyroSensor attribute)

 	
 	MODE_GYRO_G_A (ev3dev2.sensor.lego.GyroSensor attribute)

 	MODE_GYRO_RATE (ev3dev2.sensor.lego.GyroSensor attribute)

 	MODE_IR_CAL (ev3dev2.sensor.lego.InfraredSensor attribute)

 	MODE_IR_PROX (ev3dev2.sensor.lego.InfraredSensor attribute)

 	MODE_IR_REM_A (ev3dev2.sensor.lego.InfraredSensor attribute)

 	MODE_IR_REMOTE (ev3dev2.sensor.lego.InfraredSensor attribute)

 	MODE_IR_SEEK (ev3dev2.sensor.lego.InfraredSensor attribute)

 	MODE_REF_RAW (ev3dev2.sensor.lego.ColorSensor attribute)

 	MODE_REFLECT (ev3dev2.sensor.lego.LightSensor attribute)

 	MODE_RGB_RAW (ev3dev2.sensor.lego.ColorSensor attribute)

 	MODE_TOUCH (ev3dev2.sensor.lego.TouchSensor attribute)

 	MODE_US_DIST_CM (ev3dev2.sensor.lego.UltrasonicSensor attribute)

 	MODE_US_DIST_IN (ev3dev2.sensor.lego.UltrasonicSensor attribute)

 	MODE_US_LISTEN (ev3dev2.sensor.lego.UltrasonicSensor attribute)

 	MODE_US_SI_CM (ev3dev2.sensor.lego.UltrasonicSensor attribute)

 	MODE_US_SI_IN (ev3dev2.sensor.lego.UltrasonicSensor attribute)

 	modes (ev3dev2.port.LegoPort attribute)

 	(ev3dev2.sensor.Sensor attribute)

 	Motor (class in ev3dev2.motor)

 	MotorSet (class in ev3dev2.motor)

 	MoveDifferential (class in ev3dev2.motor)

 	MoveJoystick (class in ev3dev2.motor)

 	MoveSteering (class in ev3dev2.motor)

 	MoveTank (class in ev3dev2.motor)

N

 	
 	num_values (ev3dev2.sensor.Sensor attribute)

O

 	
 	odometry_start() (ev3dev2.motor.MoveDifferential method)

 	odometry_stop() (ev3dev2.motor.MoveDifferential method)

 	off() (ev3dev2.motor.MotorSet method)

 	on() (ev3dev2.motor.Motor method)

 	(ev3dev2.motor.MoveJoystick method)

 	(ev3dev2.motor.MoveSteering method)

 	(ev3dev2.motor.MoveTank method)

 	on_arc_left() (ev3dev2.motor.MoveDifferential method)

 	on_arc_right() (ev3dev2.motor.MoveDifferential method)

 	on_change() (ev3dev2.button.Button static method)

 	on_channel1_beacon (ev3dev2.sensor.lego.InfraredSensor attribute)

 	on_channel1_bottom_left (ev3dev2.sensor.lego.InfraredSensor attribute)

 	on_channel1_bottom_right (ev3dev2.sensor.lego.InfraredSensor attribute)

 	on_channel1_top_left (ev3dev2.sensor.lego.InfraredSensor attribute)

 	on_channel1_top_right (ev3dev2.sensor.lego.InfraredSensor attribute)

 	on_channel2_beacon (ev3dev2.sensor.lego.InfraredSensor attribute)

 	on_channel2_bottom_left (ev3dev2.sensor.lego.InfraredSensor attribute)

 	on_channel2_bottom_right (ev3dev2.sensor.lego.InfraredSensor attribute)

 	on_channel2_top_left (ev3dev2.sensor.lego.InfraredSensor attribute)

 	on_channel2_top_right (ev3dev2.sensor.lego.InfraredSensor attribute)

 	on_channel3_beacon (ev3dev2.sensor.lego.InfraredSensor attribute)

 	
 	on_channel3_bottom_left (ev3dev2.sensor.lego.InfraredSensor attribute)

 	on_channel3_bottom_right (ev3dev2.sensor.lego.InfraredSensor attribute)

 	on_channel3_top_left (ev3dev2.sensor.lego.InfraredSensor attribute)

 	on_channel3_top_right (ev3dev2.sensor.lego.InfraredSensor attribute)

 	on_channel4_beacon (ev3dev2.sensor.lego.InfraredSensor attribute)

 	on_channel4_bottom_left (ev3dev2.sensor.lego.InfraredSensor attribute)

 	on_channel4_bottom_right (ev3dev2.sensor.lego.InfraredSensor attribute)

 	on_channel4_top_left (ev3dev2.sensor.lego.InfraredSensor attribute)

 	on_channel4_top_right (ev3dev2.sensor.lego.InfraredSensor attribute)

 	on_for_degrees() (ev3dev2.motor.Motor method)

 	(ev3dev2.motor.MoveSteering method)

 	(ev3dev2.motor.MoveTank method)

 	on_for_distance() (ev3dev2.motor.MoveDifferential method)

 	on_for_rotations() (ev3dev2.motor.Motor method)

 	(ev3dev2.motor.MoveSteering method)

 	(ev3dev2.motor.MoveTank method)

 	on_for_seconds() (ev3dev2.motor.Motor method)

 	(ev3dev2.motor.MoveSteering method)

 	(ev3dev2.motor.MoveTank method)

 	on_to_coordinates() (ev3dev2.motor.MoveDifferential method)

 	on_to_position() (ev3dev2.motor.Motor method)

 	other_sensor_present (ev3dev2.sensor.lego.UltrasonicSensor attribute)

P

 	
 	play_file() (ev3dev2.sound.Sound method)

 	PLAY_LOOP (ev3dev2.sound.Sound attribute)

 	PLAY_NO_WAIT_FOR_COMPLETE (ev3dev2.sound.Sound attribute)

 	play_note() (ev3dev2.sound.Sound method)

 	play_song() (ev3dev2.sound.Sound method)

 	play_tone() (ev3dev2.sound.Sound method)

 	PLAY_WAIT_FOR_COMPLETE (ev3dev2.sound.Sound attribute)

 	point() (ev3dev2.display.Display method)

 	polarity (ev3dev2.motor.DcMotor attribute)

 	(ev3dev2.motor.Motor attribute)

 	(ev3dev2.motor.ServoMotor attribute)

 	POLARITY_INVERSED (ev3dev2.motor.DcMotor attribute)

 	(ev3dev2.motor.Motor attribute)

 	(ev3dev2.motor.ServoMotor attribute)

 	
 	POLARITY_NORMAL (ev3dev2.motor.DcMotor attribute)

 	(ev3dev2.motor.Motor attribute)

 	(ev3dev2.motor.ServoMotor attribute)

 	position (ev3dev2.motor.Motor attribute)

 	position_d (ev3dev2.motor.Motor attribute)

 	position_i (ev3dev2.motor.Motor attribute)

 	position_p (ev3dev2.motor.Motor attribute)

 	position_sp (ev3dev2.motor.Motor attribute)

 	(ev3dev2.motor.ServoMotor attribute)

 	PowerSupply (class in ev3dev2.power)

 	process() (ev3dev2.button.Button method)

 	(ev3dev2.sensor.lego.InfraredSensor method)

 	proximity (ev3dev2.sensor.lego.InfraredSensor attribute)

R

 	
 	ramp_down_sp (ev3dev2.motor.DcMotor attribute)

 	(ev3dev2.motor.Motor attribute)

 	ramp_up_sp (ev3dev2.motor.DcMotor attribute)

 	(ev3dev2.motor.Motor attribute)

 	rate (ev3dev2.sensor.lego.GyroSensor attribute)

 	rate_sp (ev3dev2.motor.ServoMotor attribute)

 	raw (ev3dev2.sensor.lego.ColorSensor attribute)

 	rectangle() (ev3dev2.display.Display method)

 	red (ev3dev2.sensor.lego.ColorSensor attribute)

 	reflected_light_intensity (ev3dev2.sensor.lego.ColorSensor attribute)

 	(ev3dev2.sensor.lego.LightSensor attribute)

 	reset() (ev3dev2.led.Leds method)

 	(ev3dev2.motor.Motor method)

 	(ev3dev2.sensor.lego.GyroSensor method)

 	
 	reset_console() (ev3dev2.console.Console method)

 	rgb (ev3dev2.sensor.lego.ColorSensor attribute)

 	right (ev3dev2.button.Button attribute)

 	rows (ev3dev2.console.Console attribute)

 	run() (ev3dev2.motor.ServoMotor method)

 	run_direct() (ev3dev2.motor.DcMotor method)

 	(ev3dev2.motor.Motor method)

 	run_forever() (ev3dev2.motor.DcMotor method)

 	(ev3dev2.motor.Motor method)

 	run_timed() (ev3dev2.motor.DcMotor method)

 	(ev3dev2.motor.Motor method)

 	run_to_abs_pos() (ev3dev2.motor.Motor method)

 	run_to_rel_pos() (ev3dev2.motor.Motor method)

S

 	
 	Sensor (class in ev3dev2.sensor)

 	ServoMotor (class in ev3dev2.motor)

 	set() (ev3dev2.led.Leds method)

 	set_color() (ev3dev2.led.Leds method)

 	set_device (ev3dev2.port.LegoPort attribute)

 	set_font() (ev3dev2.console.Console method)

 	set_volume() (ev3dev2.sound.Sound method)

 	shape (ev3dev2.display.Display attribute)

 	Sound (class in ev3dev2.sound)

 	sound_pressure (ev3dev2.sensor.lego.SoundSensor attribute)

 	sound_pressure_low (ev3dev2.sensor.lego.SoundSensor attribute)

 	SoundSensor (class in ev3dev2.sensor.lego)

 	speak() (ev3dev2.sound.Sound method)

 	speed (ev3dev2.motor.Motor attribute)

 	speed_d (ev3dev2.motor.Motor attribute)

 	speed_i (ev3dev2.motor.Motor attribute)

 	speed_p (ev3dev2.motor.Motor attribute)

 	speed_sp (ev3dev2.motor.Motor attribute)

 	SpeedDPM (class in ev3dev2.motor)

 	SpeedDPS (class in ev3dev2.motor)

 	SpeedNativeUnits (class in ev3dev2.motor)

 	SpeedPercent (class in ev3dev2.motor)

 	SpeedRPM (class in ev3dev2.motor)

 	
 	SpeedRPS (class in ev3dev2.motor)

 	SpeedValue (class in ev3dev2.motor)

 	state (ev3dev2.motor.DcMotor attribute)

 	(ev3dev2.motor.Motor attribute)

 	(ev3dev2.motor.ServoMotor attribute)

 	STATE_HOLDING (ev3dev2.motor.Motor attribute)

 	STATE_OVERLOADED (ev3dev2.motor.Motor attribute)

 	STATE_RAMPING (ev3dev2.motor.Motor attribute)

 	STATE_RUNNING (ev3dev2.motor.Motor attribute)

 	STATE_STALLED (ev3dev2.motor.Motor attribute)

 	status (ev3dev2.port.LegoPort attribute)

 	stop() (ev3dev2.motor.DcMotor method)

 	(ev3dev2.motor.Motor method)

 	(ev3dev2.motor.MotorSet method)

 	stop_action (ev3dev2.motor.DcMotor attribute)

 	(ev3dev2.motor.Motor attribute)

 	STOP_ACTION_BRAKE (ev3dev2.motor.DcMotor attribute)

 	(ev3dev2.motor.Motor attribute)

 	STOP_ACTION_COAST (ev3dev2.motor.DcMotor attribute)

 	(ev3dev2.motor.Motor attribute)

 	STOP_ACTION_HOLD (ev3dev2.motor.Motor attribute)

 	stop_actions (ev3dev2.motor.DcMotor attribute)

 	(ev3dev2.motor.Motor attribute)

T

 	
 	technology (ev3dev2.power.PowerSupply attribute)

 	text_at() (ev3dev2.console.Console method)

 	text_grid() (ev3dev2.display.Display method)

 	text_pixels() (ev3dev2.display.Display method)

 	time_sp (ev3dev2.motor.DcMotor attribute)

 	(ev3dev2.motor.Motor attribute)

 	tone() (ev3dev2.sound.Sound method)

 	top_left() (ev3dev2.sensor.lego.InfraredSensor method)

 	
 	top_right() (ev3dev2.sensor.lego.InfraredSensor method)

 	TouchSensor (class in ev3dev2.sensor.lego)

 	trigger (ev3dev2.led.Led attribute)

 	triggers (ev3dev2.led.Led attribute)

 	turn_left() (ev3dev2.motor.MoveDifferential method)

 	turn_right() (ev3dev2.motor.MoveDifferential method)

 	turn_to_angle() (ev3dev2.motor.MoveDifferential method)

 	type (ev3dev2.power.PowerSupply attribute)

U

 	
 	UltrasonicSensor (class in ev3dev2.sensor.lego)

 	units (ev3dev2.sensor.Sensor attribute)

 	
 	up (ev3dev2.button.Button attribute)

 	update() (ev3dev2.display.Display method)

V

 	
 	value() (ev3dev2.sensor.Sensor method)

W

 	
 	wait() (ev3dev2.motor.Motor method)

 	wait_for_bump() (ev3dev2.button.Button method)

 	(ev3dev2.sensor.lego.TouchSensor method)

 	wait_for_pressed() (ev3dev2.button.Button method)

 	(ev3dev2.sensor.lego.TouchSensor method)

 	wait_for_released() (ev3dev2.button.Button method)

 	(ev3dev2.sensor.lego.TouchSensor method)

 	
 	wait_until() (ev3dev2.motor.Motor method)

 	wait_until_angle_changed_by() (ev3dev2.sensor.lego.GyroSensor method)

 	wait_until_not_moving() (ev3dev2.motor.Motor method)

 	wait_while() (ev3dev2.motor.Motor method)

 	Wheel (class in ev3dev2.wheel)

X

 	
 	xres (ev3dev2.display.Display attribute)

Y

 	
 	yres (ev3dev2.display.Display attribute)

Other classes

Button

See ev3dev2.button.Button.

Leds

See Leds.

Power Supply

See ev3dev2.power.PowerSupply.

Sound

See ev3dev2.sound.Sound.

Display

See ev3dev2.display.Display.

Lego Port

See ev3dev2.port.LegoPort.

 _static/down.png

_static/minus.png

_static/plus.png

_static/file.png

_static/fonts.png
- charB10 charB12 charB14 charB18 ¢HarB24 ™" fharbI10
charBli2 charBIM charBII8 charBI2A” o charit2 hari14

harl18 harldq """ chertto charR12 chatR14 charR1 tharR24
po— cours10 courB12 courBfl4 courBl8 ogurB24- oursato
courBo12 cours014 courBO18 coulrBOIU™” sougpzo courol2 ouro1d
courolf cour®z 4™) courRlz cofrr14 courR18 ourR24
helvpos helvB10 helvB12 helvB1d helvB18 he|v824 delspoos o0
heivBoT2 helvBOTY helvBO18 holyBOZA™ hewdio renore eli014
helvO18 holyOP4 ™™ VA0 helvR1Z helfR14 helvR18 helyR24
rogtsos tsisto uBIS12 1uBIS 14 uBIS18 IuBIS19 [yBIS24!™

TowsTU TWEST TUBSTH TuBSTS TuBST9 [yBS24

stz tuista Is18 wiST9 JuiS24 ™ ursto urs12
IuRS14 IuRS18| |uRS19 |yRY24 ™™ st TubE12 ubB14
ubBIS IwbB19| ubB24 " kB0 mbpniz bBII4 ubBI1§
mbBI19 IubBIP4 ™ nabi10 ebr1z mB{14 ubil8 ubll 9
Rir (s TubRE TubRTe—jubR24——
ks Tutesto Tutesiz Tutesi4 TutBS18 TukBS19 utBS24["™

Tutrsto Tutkst2 TutRS14 TutRE18 TutRS19 TYtRS24™"™ oenB10
neenBi2 noenBld| neenBI8 ncenB2A™ neoldll0 noonBl2 cenBl14
neenBI18 peenBIST” neent10 neenl’2 neepl1d ncenl18 cenl24
acenhti noenR10 ncenR12 ncenR]4 R1 ndenR24 o rwhio

oyupl2 oyuple oyupls oy 24 Feftiae FHiB14 termid ernBla
inate tinB10 mB12 timB14| timB18 timB24 “" g

dmBH2 timbBI14 timBI18 timBI24 i cimii2 mi14
amil3 timi24) " = ez 4 timR18 imR24

_static/up.png

_static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 Python language bindings for ev3dev

 		
 Using python-ev3dev with MicroPython

 		
 Module support

 		
 Differences from standard Python (CPython)

 		
 Shebang

 		
 Running from the command line

 		
 Upgrading from ev3dev-jessie (library v1) to ev3dev-stretch (library v2)

 		
 Updating import statements

 		
 Remove references to connected attribute

 		
 Screen class has been renamed to Display

 		
 Reorganization of RemoteControl, BeaconSeeker and InfraredSensor

 		
 Re-designed Sound class

 		
 Once you’ve adapted to breaking changes, check out the cool new features!

 		
 API reference

 		
 Device interfaces

 		
 Motor classes

 		
 Sensor classes

 		
 Button

 		
 Leds

 		
 Power Supply

 		
 Sound

 		
 Display

 		
 Console

 		
 Lego Port

 		
 Port names

 		
 Wheels

 		
 Other APIs

 		
 Working with ev3dev remotely using RPyC

 		
 Frequently-Asked Questions

_static/ajax-loader.gif

_images/fonts.png
- charB10 charB12 charB14 charB18 ¢HarB24 ™" fharbI10
charBli2 charBIM charBII8 charBI2A” o charit2 hari14

harl18 harldq """ chertto charR12 chatR14 charR1 tharR24
po— cours10 courB12 courBfl4 courBl8 ogurB24- oursato
courBo12 cours014 courBO18 coulrBOIU™” sougpzo courol2 ouro1d
courolf cour®z 4™) courRlz cofrr14 courR18 ourR24
helvpos helvB10 helvB12 helvB1d helvB18 he|v824 delspoos o0
heivBoT2 helvBOTY helvBO18 holyBOZA™ hewdio renore eli014
helvO18 holyOP4 ™™ VA0 helvR1Z helfR14 helvR18 helyR24
rogtsos tsisto uBIS12 1uBIS 14 uBIS18 IuBIS19 [yBIS24!™

TowsTU TWEST TUBSTH TuBSTS TuBST9 [yBS24

stz tuista Is18 wiST9 JuiS24 ™ ursto urs12
IuRS14 IuRS18| |uRS19 |yRY24 ™™ st TubE12 ubB14
ubBIS IwbB19| ubB24 " kB0 mbpniz bBII4 ubBI1§
mbBI19 IubBIP4 ™ nabi10 ebr1z mB{14 ubil8 ubll 9
Rir (s TubRE TubRTe—jubR24——
ks Tutesto Tutesiz Tutesi4 TutBS18 TukBS19 utBS24["™

Tutrsto Tutkst2 TutRS14 TutRE18 TutRS19 TYtRS24™"™ oenB10
neenBi2 noenBld| neenBI8 ncenB2A™ neoldll0 noonBl2 cenBl14
neenBI18 peenBIST” neent10 neenl’2 neepl1d ncenl18 cenl24
acenhti noenR10 ncenR12 ncenR]4 R1 ndenR24 o rwhio

oyupl2 oyuple oyupls oy 24 Feftiae FHiB14 termid ernBla
inate tinB10 mB12 timB14| timB18 timB24 “" g

dmBH2 timbBI14 timBI18 timBI24 i cimii2 mi14
amil3 timi24) " = ez 4 timR18 imR24

_static/comment.png

_static/comment-bright.png

_static/comment-close.png

_static/down-pressed.png

