
ev3dev-lang Documentation
Release 1.2.0

The ev3dev team

Sep 20, 2017

Contents

1 ev3dev Language Wrapper Specification 3
1.1 Classes . 4

1.1.1 Device (abstract) . 4
1.1.2 Motor . 4
1.1.3 Large Motor . 7
1.1.4 Medium Motor . 8
1.1.5 NXT Motor . 8
1.1.6 Firgelli L12 50 Motor . 8
1.1.7 Firgelli L12 100 Motor . 8
1.1.8 DC Motor . 8
1.1.9 Servo Motor . 10
1.1.10 LED . 11
1.1.11 Button . 12
1.1.12 Sensor . 12
1.1.13 I2C Sensor . 13
1.1.14 Power Supply . 14
1.1.15 Lego Port . 14

1.2 Special sensor classes . 15
1.2.1 Touch Sensor . 15
1.2.2 Color Sensor . 16
1.2.3 Ultrasonic Sensor . 17
1.2.4 Gyro Sensor . 18
1.2.5 Infrared Sensor . 19
1.2.6 Sound Sensor . 19
1.2.7 Light Sensor . 20

1.3 Constants / Enums . 21
1.3.1 Ports . 21

2 Autogen scripts for ev3dev language bindings 23
2.1 Usage . 23

2.1.1 Prerequisites . 23
2.1.2 Running from the command line . 23

2.2 How it works . 23
2.3 Implementation Notes . 24
2.4 Contributing to the autogen script . 24

i

ii

ev3dev-lang Documentation, Release 1.2.0

This repository stores the utilities and metadata information for the ev3dev-lang family of libraries. These libraries are
easy-to-use interfaces for the APIs that are available on ev3dev-based devices.

The complete documentation is hosted at http://ev3dev-lang.readthedocs.org.

We support multiple libraries for various programming languages using a centralized “specification” which we keep
updated as kernel changes are made. We don’t have the actual library code here (see below) – instead we use this repo
to facilitate the maintenance of our bindings.

We currently support libraries for the following languages:

• C++

• Node.js

• Python

Each binding is written based on our central spec, so each has a uniform interface which is kept close to the ev3dev
API surface while still encouraging language-specific enhancements.

Contents

Contents 1

http://www.ev3dev.org
http://ev3dev-lang.readthedocs.org
https://github.com/ddemidov/ev3dev-lang-cpp
https://github.com/wasabifan/ev3dev-lang-js
https://github.com/rhempel/ev3dev-lang-python

ev3dev-lang Documentation, Release 1.2.0

2 Contents

CHAPTER 1

ev3dev Language Wrapper Specification

This is an unofficial specification that defines a unified interface for language wrappers to expose the ev3dev device
APIs.

General Notes

Because this specification is meant to be implemented in multiple languages, the specific naming conventions of
properties, methods and classes are not defined here. Depending on the language, names will be slightly different (ex.
“touchSensor” or “TouchSensor” or “touch-sensor”) so that they fit the language’s naming conventions.

Some concepts that apply to multiple classes are described as “abstracts”. These abstract sections explain how the
class should handle specific situations, and do not necessarily translate in to their own class in the wrapper.

Implementation Notes (important)

• File access. There should be one class that is used or inherited from in all other classes that need to access
object properties via file I/O. This class should check paths for validity, do basic error checking, and generally
implement as much of the core I/O functionality as possible.

• Errors. All file access and other error-prone calls should be wrapped with error handling. If an error thrown
by an external call is fatal, the wrapper should throw an error for the caller that states the error and gives some
insight in to what actually happened.

• Naming conventions. All names should follow the language’s naming conventions. Keep the names consistent,
so that users can easily find what they want.

• Attribute types. int and string attributes are read-write files containing a single value that is representable
either as an integer or as a single word. A string array attribute is a readonly file that contains space-
separated list of words, where each word is a possible value of some other string atribute. And a string
selector attribute is a read-write file that contains space-separated list of possible values, where the currently
selected value is enclosed in square brackets. Another value may be selected by writing a single word to the file.

3

http://www.ev3dev.org

ev3dev-lang Documentation, Release 1.2.0

Contents

Classes

Device (abstract)

class Device
This is the base class that handles control tasks for a single port or index. The class must chose one device out
of the available ports to control. Given an IO port (in the constructor), an implementation should:

•If the specified port is blank or unspecified/undefined/null, the available devices should be enumerated
until a suitable device is found. Any device is suitable when it’s type is known to be compatible with the
controlling class, and it meets any other requirements specified by the caller.

•If the specified port name is not blank, the available devices should be enumerated until a device is found
that is plugged in to the specified port. The supplied port name should be compared directly to the value
from the file, so that advanced port strings will match, such as in1:mux3.

If an error occurs after the initial connection, an exception should be thrown by the binding informing the caller
of what went wrong. Unless the error is fatal to the application, no other actions should be taken.

connected
If a valid device is found while enumerating the ports, the connected variable is set to true (by default,
it should be false). If connected is false when an attempt is made to read from or write to a property
file, an error should be thrown (except while in the consructor).

Motor

class Motor
The motor class provides a uniform interface for using motors with positional and directional feedback such as
the EV3 and NXT motors. This feedback allows for precise control of the motors. This is the most common
type of motor, so we just call it motor.

The way to configure a motor is to set the ‘_sp’ attributes when calling a command or before. Only in
‘run_direct’ mode attribute changes are processed immediately, in the other modes they only take place when a
new command is issued.

ev3dev docs link: http://www.ev3dev.org/docs/drivers/tacho-motor-class/

System properties

Address
string, read

Returns the name of the port that this motor is connected to.

Command
string, write

Sends a command to the motor controller. See commands for a list of possible values.

Commands
string array, read

4 Chapter 1. ev3dev Language Wrapper Specification

ev3dev-lang Documentation, Release 1.2.0

Returns a list of commands that are supported by the motor controller. Possible values are run-forever,
run-to-abs-pos, run-to-rel-pos, run-timed, run-direct, stop and reset. Not all commands may be supported.

•run-forever will cause the motor to run until another command is sent.

•run-to-abs-pos will run to an absolute position specified by position_sp and then stop using the action
specified in stop_action.

•run-to-rel-pos will run to a position relative to the current position value. The new position will be
current position + position_sp. When the new position is reached, the motor will stop using the action
specified by stop_action.

•run-timed will run the motor for the amount of time specified in time_sp and then stop the motor using
the action specified by stop_action.

•run-direct will run the motor at the duty cycle specified by duty_cycle_sp. Unlike other run com-
mands, changing duty_cycle_sp while running will take effect immediately.

•stop will stop any of the run commands before they are complete using the action specified by
stop_action.

•reset will reset all of the motor parameter attributes to their default value. This will also have the
effect of stopping the motor.

Count_Per_Rot
int, read

Returns the number of tacho counts in one rotation of the motor. Tacho counts are used by the position and
speed attributes, so you can use this value to convert rotations or degrees to tacho counts. (rotation motors
only)

Count_Per_M
int, read

Returns the number of tacho counts in one meter of travel of the motor. Tacho counts are used by the
position and speed attributes, so you can use this value to convert from distance to tacho counts. (linear
motors only)

Driver_Name
string, read

Returns the name of the driver that provides this tacho motor device.

Duty_Cycle
int, read

Returns the current duty cycle of the motor. Units are percent. Values are -100 to 100.

Duty_Cycle_SP
int, read/write

Writing sets the duty cycle setpoint. Reading returns the current value. Units are in percent. Valid values
are -100 to 100. A negative value causes the motor to rotate in reverse.

Full_Travel_Count
int, read

Returns the number of tacho counts in the full travel of the motor. When combined with the count_per_m
atribute, you can use this value to calculate the maximum travel distance of the motor. (linear motors only)

Polarity
string, read/write

1.1. Classes 5

ev3dev-lang Documentation, Release 1.2.0

Sets the polarity of the motor. With normal polarity, a positive duty cycle will cause the motor to rotate
clockwise. With inversed polarity, a positive duty cycle will cause the motor to rotate counter-clockwise.
Valid values are normal and inversed.

Position
int, read/write

Returns the current position of the motor in pulses of the rotary encoder. When the motor rotates clockwise,
the position will increase. Likewise, rotating counter-clockwise causes the position to decrease. Writing
will set the position to that value.

Position_P
int, read/write

The proportional constant for the position PID.

Position_I
int, read/write

The integral constant for the position PID.

Position_D
int, read/write

The derivative constant for the position PID.

Position_SP
int, read/write

Writing specifies the target position for the run-to-abs-pos and run-to-rel-pos commands. Reading returns
the current value. Units are in tacho counts. You can use the value returned by counts_per_rot to convert
tacho counts to/from rotations or degrees.

Max_Speed
int, read

Returns the maximum value that is accepted by the speed_sp attribute. This may be slightly different than
the maximum speed that a particular motor can reach - it’s the maximum theoretical speed.

Speed
int, read

Returns the current motor speed in tacho counts per second. Note, this is not necessarily degrees (although
it is for LEGO motors). Use the count_per_rot attribute to convert this value to RPM or deg/sec.

Speed_SP
int, read/write

Writing sets the target speed in tacho counts per second used for all run-* commands except run-direct.
Reading returns the current value. A negative value causes the motor to rotate in reverse with the exception
of run-to-*-pos commands where the sign is ignored. Use the count_per_rot attribute to convert RPM or
deg/sec to tacho counts per second. Use the count_per_m attribute to convert m/s to tacho counts per
second.

Ramp_Up_SP
int, read/write

Writing sets the ramp up setpoint. Reading returns the current value. Units are in milliseconds and must
be positive. When set to a non-zero value, the motor speed will increase from 0 to 100% of max_speed
over the span of this setpoint. The actual ramp time is the ratio of the difference between the speed_sp and
the current speed and max_speed multiplied by ramp_up_sp.

6 Chapter 1. ev3dev Language Wrapper Specification

ev3dev-lang Documentation, Release 1.2.0

Ramp_Down_SP
int, read/write

Writing sets the ramp down setpoint. Reading returns the current value. Units are in milliseconds and must
be positive. When set to a non-zero value, the motor speed will decrease from 0 to 100% of max_speed
over the span of this setpoint. The actual ramp time is the ratio of the difference between the speed_sp and
the current speed and max_speed multiplied by ramp_down_sp.

Speed_P
int, read/write

The proportional constant for the speed regulation PID.

Speed_I
int, read/write

The integral constant for the speed regulation PID.

Speed_D
int, read/write

The derivative constant for the speed regulation PID.

State
string array, read

Reading returns a list of state flags. Possible flags are running, ramping, holding, overloaded and stalled.

Stop_Action
string, read/write

Reading returns the current stop action. Writing sets the stop action. The value determines the motors
behavior when command is set to stop. Also, it determines the motors behavior when a run command
completes. See stop_actions for a list of possible values.

Stop_Actions
string array, read

Returns a list of stop actions supported by the motor controller. Possible values are coast, brake and hold.
coast means that power will be removed from the motor and it will freely coast to a stop. brake means that
power will be removed from the motor and a passive electrical load will be placed on the motor. This is
usually done by shorting the motor terminals together. This load will absorb the energy from the rotation
of the motors and cause the motor to stop more quickly than coasting. hold does not remove power from
the motor. Instead it actively tries to hold the motor at the current position. If an external force tries to turn
the motor, the motor will ‘push back’ to maintain its position.

Time_SP
int, read/write

Writing specifies the amount of time the motor will run when using the run-timed command. Reading
returns the current value. Units are in milliseconds.

Large Motor

class Large_Motor
EV3 large servo motor

inherits from: motor

1.1. Classes 7

ev3dev-lang Documentation, Release 1.2.0

Target driver(s): lego-ev3-l-motor

Medium Motor

class Medium_Motor
EV3 medium servo motor

inherits from: motor

Target driver(s): lego-ev3-m-motor

NXT Motor

class NXT_Motor
NXT servo motor

inherits from: motor

Target driver(s): lego-nxt-motor

Firgelli L12 50 Motor

class Firgelli_L12_50_Motor
Firgelli L12 50 linear servo motor

inherits from: motor

Target driver(s): fi-l12-ev3-50

Firgelli L12 100 Motor

class Firgelli_L12_100_Motor
Firgelli L12 100 linear servo motor

inherits from: motor

Target driver(s): fi-l12-ev3-100

DC Motor

class DC_Motor
The DC motor class provides a uniform interface for using regular DC motors with no fancy controls or feed-
back. This includes LEGO MINDSTORMS RCX motors and LEGO Power Functions motors.

8 Chapter 1. ev3dev Language Wrapper Specification

ev3dev-lang Documentation, Release 1.2.0

ev3dev docs link: http://www.ev3dev.org/docs/drivers/dc-motor-class/

System properties

Address
string, read

Returns the name of the port that this motor is connected to.

Command
string, write

Sets the command for the motor. Possible values are run-forever, run-timed and stop. Not all commands
may be supported, so be sure to check the contents of the commands attribute.

Commands
string array, read

Returns a list of commands supported by the motor controller.

Driver_Name
string, read

Returns the name of the motor driver that loaded this device. See the list of [supported devices] for a list
of drivers.

Duty_Cycle
int, read

Shows the current duty cycle of the PWM signal sent to the motor. Values are -100 to 100 (-100% to
100%).

Duty_Cycle_SP
int, read/write

Writing sets the duty cycle setpoint of the PWM signal sent to the motor. Valid values are -100 to 100
(-100% to 100%). Reading returns the current setpoint.

Polarity
string, read/write

Sets the polarity of the motor. Valid values are normal and inversed.

Ramp_Down_SP
int, read/write

Sets the time in milliseconds that it take the motor to ramp down from 100% to 0%. Valid values are 0 to
10000 (10 seconds). Default is 0.

Ramp_Up_SP
int, read/write

Sets the time in milliseconds that it take the motor to up ramp from 0% to 100%. Valid values are 0 to
10000 (10 seconds). Default is 0.

State
string array, read

Gets a list of flags indicating the motor status. Possible flags are running and ramping. running indicates
that the motor is powered. ramping indicates that the motor has not yet reached the duty_cycle_sp.

Stop_Action
string, write

1.1. Classes 9

ev3dev-lang Documentation, Release 1.2.0

Sets the stop action that will be used when the motor stops. Read stop_actions to get the list of valid
values.

Stop_Actions
string array, read

Gets a list of stop actions. Valid values are coast and brake.

Time_SP
int, read/write

Writing specifies the amount of time the motor will run when using the run-timed command. Reading
returns the current value. Units are in milliseconds.

Servo Motor

class Servo_Motor
The servo motor class provides a uniform interface for using hobby type servo motors.

ev3dev docs link: http://www.ev3dev.org/docs/drivers/servo-motor-class/

System properties

Address
string, read

Returns the name of the port that this motor is connected to.

Command
string, write

Sets the command for the servo. Valid values are run and float. Setting to run will cause the servo to be
driven to the position_sp set in the position_sp attribute. Setting to float will remove power from the motor.

Driver_Name
string, read

Returns the name of the motor driver that loaded this device. See the list of [supported devices] for a list
of drivers.

Max_Pulse_SP
int, read/write

Used to set the pulse size in milliseconds for the signal that tells the servo to drive to the maximum
(clockwise) position_sp. Default value is 2400. Valid values are 2300 to 2700. You must write to the
position_sp attribute for changes to this attribute to take effect.

Mid_Pulse_SP
int, read/write

Used to set the pulse size in milliseconds for the signal that tells the servo to drive to the mid position_sp.
Default value is 1500. Valid values are 1300 to 1700. For example, on a 180 degree servo, this would be
90 degrees. On continuous rotation servo, this is the ‘neutral’ position_sp where the motor does not turn.
You must write to the position_sp attribute for changes to this attribute to take effect.

Min_Pulse_SP
int, read/write

10 Chapter 1. ev3dev Language Wrapper Specification

ev3dev-lang Documentation, Release 1.2.0

Used to set the pulse size in milliseconds for the signal that tells the servo to drive to the miniumum
(counter-clockwise) position_sp. Default value is 600. Valid values are 300 to 700. You must write to the
position_sp attribute for changes to this attribute to take effect.

Polarity
string, read/write

Sets the polarity of the servo. Valid values are normal and inversed. Setting the value to inversed will cause
the position_sp value to be inversed. i.e -100 will correspond to max_pulse_sp, and 100 will correspond
to min_pulse_sp.

Position_SP
int, read/write

Reading returns the current position_sp of the servo. Writing instructs the servo to move to the specified
position_sp. Units are percent. Valid values are -100 to 100 (-100% to 100%) where -100 corresponds to
min_pulse_sp, 0 corresponds to mid_pulse_sp and 100 corresponds to max_pulse_sp.

Rate_SP
int, read/write

Sets the rate_sp at which the servo travels from 0 to 100.0% (half of the full range of the servo). Units are
in milliseconds. Example: Setting the rate_sp to 1000 means that it will take a 180 degree servo 2 second
to move from 0 to 180 degrees. Note: Some servo controllers may not support this in which case reading
and writing will fail with -EOPNOTSUPP. In continuous rotation servos, this value will affect the rate_sp
at which the speed ramps up or down.

State
string array, read

Returns a list of flags indicating the state of the servo. Possible values are: * running: Indicates that the
motor is powered.

LED

class LED
Any device controlled by the generic LED driver. See https://www.kernel.org/doc/Documentation/leds/
leds-class.txt for more details.

System properties

Max_Brightness
int, read

Returns the maximum allowable brightness value.

Brightness
int, read/write

Sets the brightness level. Possible values are from 0 to max_brightness.

Triggers
string array, read

Returns a list of available triggers.

Trigger
string selector, read/write

1.1. Classes 11

https://www.kernel.org/doc/Documentation/leds/leds-class.txt
https://www.kernel.org/doc/Documentation/leds/leds-class.txt

ev3dev-lang Documentation, Release 1.2.0

Sets the led trigger. A trigger is a kernel based source of led events. Triggers can either be simple or
complex. A simple trigger isn’t configurable and is designed to slot into existing subsystems with minimal
additional code. Examples are the ide-disk and nand-disk triggers.

Complex triggers whilst available to all LEDs have LED specific parameters and work on a per LED basis.
The timer trigger is an example. The timer trigger will periodically change the LED brightness between
0 and the current brightness setting. The on and off time can be specified via delay_{on,off} attributes in
milliseconds. You can change the brightness value of a LED independently of the timer trigger. However,
if you set the brightness value to 0 it will also disable the timer trigger.

Delay_On
int, read/write

The timer trigger will periodically change the LED brightness between 0 and the current brightness setting.
The on time can be specified via delay_on attribute in milliseconds.

Delay_Off
int, read/write

The timer trigger will periodically change the LED brightness between 0 and the current brightness setting.
The off time can be specified via delay_off attribute in milliseconds.

Button

class Button
Provides a generic button reading mechanism that can be adapted to platform specific implementations. Each
platform’s specific button capabilites are enumerated in the ‘platforms’ section of this specification.

Sensor

class Sensor
The sensor class provides a uniform interface for using most of the sensors available for the EV3. The various
underlying device drivers will create a lego-sensor device for interacting with the sensors.

Sensors are primarily controlled by setting the mode and monitored by reading the value<N> attributes. Values
can be converted to floating point if needed by value<N> / 10.0 ^ decimals.

Since the name of the sensor<N> device node does not correspond to the port that a sensor is plugged in to,
you must look at the address attribute if you need to know which port a sensor is plugged in to. However, if you
don’t have more than one sensor of each type, you can just look for a matching driver_name. Then it will not
matter which port a sensor is plugged in to - your program will still work.

ev3dev docs link: http://www.ev3dev.org/docs/drivers/lego-sensor-class/

System properties

Address
string, read

Returns the name of the port that the sensor is connected to, e.g. ev3:in1. I2C sensors also include the I2C
address (decimal), e.g. ev3:in1:i2c8.

Command
string, write

Sends a command to the sensor.

12 Chapter 1. ev3dev Language Wrapper Specification

ev3dev-lang Documentation, Release 1.2.0

Commands
string array, read

Returns a list of the valid commands for the sensor. Returns -EOPNOTSUPP if no commands are sup-
ported.

Decimals
int, read

Returns the number of decimal places for the values in the value<N> attributes of the current mode.

Driver_Name
string, read

Returns the name of the sensor device/driver. See the list of [supported sensors] for a complete list of
drivers.

Mode
string, read/write

Returns the current mode. Writing one of the values returned by modes sets the sensor to that mode.

Modes
string array, read

Returns a list of the valid modes for the sensor.

Num_Values
int, read

Returns the number of value<N> attributes that will return a valid value for the current mode.

Units
string, read

Returns the units of the measured value for the current mode. May return empty string

I2C Sensor

class I2C_Sensor
A generic interface to control I2C-type EV3 sensors.

inherits from: sensor

Target driver(s): nxt-i2c-sensor

System properties

FW_Version
string, read

Returns the firmware version of the sensor if available. Currently only I2C/NXT sensors support this.

Poll_MS
int, read/write

Returns the polling period of the sensor in milliseconds. Writing sets the polling period. Setting to 0
disables polling. Minimum value is hard coded as 50 msec. Returns -EOPNOTSUPP if changing polling
is not supported. Currently only I2C/NXT sensors support changing the polling period.

1.1. Classes 13

ev3dev-lang Documentation, Release 1.2.0

Power Supply

class Power_Supply
A generic interface to read data from the system’s power_supply class. Uses the built-in legoev3-battery if none
is specified.

System properties

Measured_Current
int, read

The measured current that the battery is supplying (in microamps)

Measured_Voltage
int, read

The measured voltage that the battery is supplying (in microvolts)

Max_Voltage
int, read

Min_Voltage
int, read

Technology
string, read

Type
string, read

Lego Port

class Lego_Port
The lego-port class provides an interface for working with input and output ports that are compatible with LEGO
MINDSTORMS RCX/NXT/EV3, LEGO WeDo and LEGO Power Functions sensors and motors. Supported
devices include the LEGO MINDSTORMS EV3 Intelligent Brick, the LEGO WeDo USB hub and various
sensor multiplexers from 3rd party manufacturers.

Some types of ports may have multiple modes of operation. For example, the input ports on the EV3 brick can
communicate with sensors using UART, I2C or analog validate signals - but not all at the same time. Therefore
there are multiple modes available to connect to the different types of sensors.

In most cases, ports are able to automatically detect what type of sensor or motor is connected. In some cases
though, this must be manually specified using the mode and set_device attributes. The mode attribute affects
how the port communicates with the connected device. For example the input ports on the EV3 brick can
communicate using UART, I2C or analog voltages, but not all at the same time, so the mode must be set to the
one that is appropriate for the connected sensor. The set_device attribute is used to specify the exact type of
sensor that is connected. Note: the mode must be correctly set before setting the sensor type.

Ports can be found at /sys/class/lego-port/port<N> where <N> is incremented each time a new port is registered.
Note: The number is not related to the actual port at all - use the address attribute to find a specific port.

System properties

Address
string, read

14 Chapter 1. ev3dev Language Wrapper Specification

ev3dev-lang Documentation, Release 1.2.0

Returns the name of the port. See individual driver documentation for the name that will be returned.

Driver_Name
string, read

Returns the name of the driver that loaded this device. You can find the complete list of drivers in the [list
of port drivers].

Modes
string array, read

Returns a list of the available modes of the port.

Mode
string, read/write

Reading returns the currently selected mode. Writing sets the mode. Generally speaking when the mode
changes any sensor or motor devices associated with the port will be removed new ones loaded, however
this this will depend on the individual driver implementing this class.

Set_Device
string, write

For modes that support it, writing the name of a driver will cause a new device to be registered for that
driver and attached to this port. For example, since NXT/Analog sensors cannot be auto-detected, you must
use this attribute to load the correct driver. Returns -EOPNOTSUPP if setting a device is not supported.

Status
string, read

In most cases, reading status will return the same value as mode. In cases where there is an auto mode
additional values may be returned, such as no-device or error. See individual port driver documentation
for the full list of possible values.

Special sensor classes

The classes derive from Sensor and provide helper functions specific to the corresponding sensor type. Each of the
functions makes sure the sensor is in the required mode and then returns the specified value.

Touch Sensor

class Touch_Sensor
Touch Sensor

inherits from: sensor

Target driver(s): lego-ev3-touch, lego-nxt-touch

Special properties

Is_Pressed
boolean, read

A boolean indicating whether the current touch sensor is being pressed.

1.2. Special sensor classes 15

ev3dev-lang Documentation, Release 1.2.0

Required mode: TOUCH

Value index: 0

Color Sensor

class Color_Sensor
LEGO EV3 color sensor.

inherits from: sensor

Target driver(s): lego-ev3-color

ev3dev docs link: http://www.ev3dev.org/docs/sensors/lego-ev3-color-sensor/

Special properties

Reflected_Light_Intensity
int, read

Reflected light intensity as a percentage. Light on sensor is red.

Required mode: COL-REFLECT

Value index: 0

Ambient_Light_Intensity
int, read

Ambient light intensity. Light on sensor is dimly lit blue.

Required mode: COL-AMBIENT

Value index: 0

Color
int, read

Color detected by the sensor, categorized by overall value.

• 0: No color

• 1: Black

• 2: Blue

• 3: Green

• 4: Yellow

• 5: Red

• 6: White

16 Chapter 1. ev3dev Language Wrapper Specification

ev3dev-lang Documentation, Release 1.2.0

• 7: Brown

Required mode: COL-COLOR

Value index: 0

Red
int, read

Red component of the detected color, in the range 0-1020.

Required mode: RGB-RAW

Value index: 0

Green
int, read

Green component of the detected color, in the range 0-1020.

Required mode: RGB-RAW

Value index: 1

Blue
int, read

Blue component of the detected color, in the range 0-1020.

Required mode: RGB-RAW

Value index: 2

Ultrasonic Sensor

class Ultrasonic_Sensor
LEGO EV3 ultrasonic sensor.

inherits from: sensor

Target driver(s): lego-ev3-us, lego-nxt-us

ev3dev docs link: http://www.ev3dev.org/docs/sensors/lego-ev3-ultrasonic-sensor/

Special properties

Distance_Centimeters
float, read

1.2. Special sensor classes 17

ev3dev-lang Documentation, Release 1.2.0

Measurement of the distance detected by the sensor, in centimeters.

Required mode: US-DIST-CM

Value index: 0

Distance_Inches
float, read

Measurement of the distance detected by the sensor, in inches.

Required mode: US-DIST-IN

Value index: 0

Other_Sensor_Present
boolean, read

Value indicating whether another ultrasonic sensor could be heard nearby.

Required mode: US-LISTEN

Value index: 0

Gyro Sensor

class Gyro_Sensor
LEGO EV3 gyro sensor.

inherits from: sensor

Target driver(s): lego-ev3-gyro

ev3dev docs link: http://www.ev3dev.org/docs/sensors/lego-ev3-gyro-sensor/

Special properties

Angle
int, read

The number of degrees that the sensor has been rotated since it was put into this mode.

Required mode: GYRO-ANG

Value index: 0

Rate
int, read

18 Chapter 1. ev3dev Language Wrapper Specification

ev3dev-lang Documentation, Release 1.2.0

The rate at which the sensor is rotating, in degrees/second.

Required mode: GYRO-RATE

Value index: 0

Infrared Sensor

class Infrared_Sensor
LEGO EV3 infrared sensor.

inherits from: sensor

Target driver(s): lego-ev3-ir

ev3dev docs link: http://www.ev3dev.org/docs/sensors/lego-ev3-infrared-sensor/

Special properties

Proximity
int, read

A measurement of the distance between the sensor and the remote, as a percentage. 100% is approximately
70cm/27in.

Required mode: IR-PROX

Value index: 0

Sound Sensor

class Sound_Sensor
LEGO NXT Sound Sensor

inherits from: sensor

Target driver(s): lego-nxt-sound

ev3dev docs link: http://www.ev3dev.org/docs/sensors/lego-nxt-sound-sensor/

Special properties

Sound_Pressure
float, read

A measurement of the measured sound pressure level, as a percent. Uses a flat weighting.

1.2. Special sensor classes 19

ev3dev-lang Documentation, Release 1.2.0

Required mode: DB

Value index: 0

Sound_Pressure_Low
float, read

A measurement of the measured sound pressure level, as a percent. Uses A-weighting, which focuses on
levels up to 55 dB.

Required mode: DBA

Value index: 0

Light Sensor

class Light_Sensor
LEGO NXT Light Sensor

inherits from: sensor

Target driver(s): lego-nxt-light

ev3dev docs link: http://www.ev3dev.org/docs/sensors/lego-nxt-light-sensor/

Special properties

Reflected_Light_Intensity
float, read

A measurement of the reflected light intensity, as a percentage.

Required mode: REFLECT

Value index: 0

Ambient_Light_Intensity
float, read

A measurement of the ambient light intensity, as a percentage.

Required mode: AMBIENT

20 Chapter 1. ev3dev Language Wrapper Specification

ev3dev-lang Documentation, Release 1.2.0

Value index: 0

Constants / Enums

Due to the inherent differences between the various languages that we support here, the enums listed below can also
be declared as global constants.

Ports

INPUT_AUTO
Automatic input selection. Value is instance-specific (see below for details)

OUTPUT_AUTO
Automatic output selection. Value is instance-specific (see below for details)

INPUT_1
Sensor port 1, "in1"

INPUT_2
Sensor port 2„ "in2"

INPUT_3
Sensor port 3, "in3"

INPUT_4
Sensor port 4, "in4"

OUTPUT_A
Motor port A, "outA"

OUTPUT_B
Motor port B, "outB"

OUTPUT_C
Motor port C, "outC"

OUTPUT_D
Motor port D, "outD"

Note: The values for the *_AUTO constants can be chosen by the implementation. They can have any value that
signifies an auto-search.

Compatibility table

Spec Version Fully Supported Kernel Version
v0.9.1 v3.16.1-7-ev3dev
v0.9.2 v3.16.7-ckt10-4-ev3dev
v1.0.0 v3.16.7-ckt21-9-ev3dev

1.3. Constants / Enums 21

ev3dev-lang Documentation, Release 1.2.0

22 Chapter 1. ev3dev Language Wrapper Specification

CHAPTER 2

Autogen scripts for ev3dev language bindings

To help us maintain our language bindings, we have written a script to automatically update sections of code according
to changes in our API specification. We define code templates using Liquid, which are stored in the templates
folder with the .liquid extension.

Usage

Prerequisites

• Make sure that you have cloned the repo (including submodules) and cd‘d into the autogen directory

• You must have Node.JS and npm installed

• If you have not yet done so yet, run npm install to install the dependencies for auto-generation

Running from the command line

If you run the script without any parameters, it will look for an autogen-config.json file in your current working
directory. The autogen-config file specifies the locations to look for templates and source files.

$ node path/to/autogen.js

If you want to specify a config file manually, you can include use a full file path for the target JSON config file.

$ node path/to/autogen.js other/path/to/config.json

How it works

Our script searches code files for comments that define blocks of code that it should automatically generate. The inline
comment tags are formatted as follows (C-style comments):

23

http://liquidmarkup.org

ev3dev-lang Documentation, Release 1.2.0

//~autogen test-template foo.bar>tmp
...
//~autogen

After the initial declaration (~autogen), the rest of the comment defines parameters for the generation script. The
first block of text up to the space is the file name of the template to use. The .liquid extension is automatically
appended to the given name, and then the file is loaded and parsed.

The rest of the comment is a space-separated list of contextual variables. The section before the > defines the source,
and the section after defines the destination. The value from the source is copied to the destination, in the global Liquid
context. This makes it possible to use a single template file to generate multiple classes.

Implementation Notes

Todo

fill this up

Contributing to the autogen script

Just as we welcome contributions to the language bindings in this repo, we love to have people update our infrastruc-
ture. If you want to make a contribution, here are some quick tips to get started developing.

• After making a change, you should run the script and tell it to re-generate some files to make sure that your
changes work as expected.

• If you are making more extensive changes, it may be helpful to create a temporary regen group with some test
files to be able to manually test any new features or modifications.

• Although you can use any text editor, we recommend using Visual Studio Code to edit the autogen scripts. It
has great autocomplete, and their debug GUI works well with node.

Indices and tables

• genindex

• search

24 Chapter 2. Autogen scripts for ev3dev language bindings

https://code.visualstudio.com

Index

A
Address (DC_Motor attribute), 9
Address (Lego_Port attribute), 14
Address (Motor attribute), 4
Address (Sensor attribute), 12
Address (Servo_Motor attribute), 10
Ambient_Light_Intensity (Color_Sensor attribute), 16
Ambient_Light_Intensity (Light_Sensor attribute), 20
Angle (Gyro_Sensor attribute), 18

B
Blue (Color_Sensor attribute), 17
Brightness (LED attribute), 11
Button (built-in class), 12

C
Color (Color_Sensor attribute), 16
Color_Sensor (built-in class), 16
Command (DC_Motor attribute), 9
Command (Motor attribute), 4
Command (Sensor attribute), 12
Command (Servo_Motor attribute), 10
Commands (DC_Motor attribute), 9
Commands (Motor attribute), 4
Commands (Sensor attribute), 12
connected (Device attribute), 4
Count_Per_M (Motor attribute), 5
Count_Per_Rot (Motor attribute), 5

D
DC_Motor (built-in class), 8
Decimals (Sensor attribute), 13
Delay_Off (LED attribute), 12
Delay_On (LED attribute), 12
Device (built-in class), 4
Distance_Centimeters (Ultrasonic_Sensor attribute), 17
Distance_Inches (Ultrasonic_Sensor attribute), 18
Driver_Name (DC_Motor attribute), 9
Driver_Name (Lego_Port attribute), 15

Driver_Name (Motor attribute), 5
Driver_Name (Sensor attribute), 13
Driver_Name (Servo_Motor attribute), 10
Duty_Cycle (DC_Motor attribute), 9
Duty_Cycle (Motor attribute), 5
Duty_Cycle_SP (DC_Motor attribute), 9
Duty_Cycle_SP (Motor attribute), 5

F
Firgelli_L12_100_Motor (built-in class), 8
Firgelli_L12_50_Motor (built-in class), 8
Full_Travel_Count (Motor attribute), 5
FW_Version (I2C_Sensor attribute), 13

G
Green (Color_Sensor attribute), 17
Gyro_Sensor (built-in class), 18

I
I2C_Sensor (built-in class), 13
Infrared_Sensor (built-in class), 19
INPUT_1 (built-in variable), 21
INPUT_2 (built-in variable), 21
INPUT_3 (built-in variable), 21
INPUT_4 (built-in variable), 21
INPUT_AUTO (built-in variable), 21
Is_Pressed (Touch_Sensor attribute), 15

L
Large_Motor (built-in class), 7
LED (built-in class), 11
Lego_Port (built-in class), 14
Light_Sensor (built-in class), 20

M
Max_Brightness (LED attribute), 11
Max_Pulse_SP (Servo_Motor attribute), 10
Max_Speed (Motor attribute), 6
Max_Voltage (Power_Supply attribute), 14

25

ev3dev-lang Documentation, Release 1.2.0

Measured_Current (Power_Supply attribute), 14
Measured_Voltage (Power_Supply attribute), 14
Medium_Motor (built-in class), 8
Mid_Pulse_SP (Servo_Motor attribute), 10
Min_Pulse_SP (Servo_Motor attribute), 10
Min_Voltage (Power_Supply attribute), 14
Mode (Lego_Port attribute), 15
Mode (Sensor attribute), 13
Modes (Lego_Port attribute), 15
Modes (Sensor attribute), 13
Motor (built-in class), 4

N
Num_Values (Sensor attribute), 13
NXT_Motor (built-in class), 8

O
Other_Sensor_Present (Ultrasonic_Sensor attribute), 18
OUTPUT_A (built-in variable), 21
OUTPUT_AUTO (built-in variable), 21
OUTPUT_B (built-in variable), 21
OUTPUT_C (built-in variable), 21
OUTPUT_D (built-in variable), 21

P
Polarity (DC_Motor attribute), 9
Polarity (Motor attribute), 5
Polarity (Servo_Motor attribute), 11
Poll_MS (I2C_Sensor attribute), 13
Position (Motor attribute), 6
Position_D (Motor attribute), 6
Position_I (Motor attribute), 6
Position_P (Motor attribute), 6
Position_SP (Motor attribute), 6
Position_SP (Servo_Motor attribute), 11
Power_Supply (built-in class), 14
Proximity (Infrared_Sensor attribute), 19

R
Ramp_Down_SP (DC_Motor attribute), 9
Ramp_Down_SP (Motor attribute), 6
Ramp_Up_SP (DC_Motor attribute), 9
Ramp_Up_SP (Motor attribute), 6
Rate (Gyro_Sensor attribute), 18
Rate_SP (Servo_Motor attribute), 11
Red (Color_Sensor attribute), 17
Reflected_Light_Intensity (Color_Sensor attribute), 16
Reflected_Light_Intensity (Light_Sensor attribute), 20

S
Sensor (built-in class), 12
Servo_Motor (built-in class), 10
Set_Device (Lego_Port attribute), 15

Sound_Pressure (Sound_Sensor attribute), 19
Sound_Pressure_Low (Sound_Sensor attribute), 20
Sound_Sensor (built-in class), 19
Speed (Motor attribute), 6
Speed_D (Motor attribute), 7
Speed_I (Motor attribute), 7
Speed_P (Motor attribute), 7
Speed_SP (Motor attribute), 6
State (DC_Motor attribute), 9
State (Motor attribute), 7
State (Servo_Motor attribute), 11
Status (Lego_Port attribute), 15
Stop_Action (DC_Motor attribute), 9
Stop_Action (Motor attribute), 7
Stop_Actions (DC_Motor attribute), 10
Stop_Actions (Motor attribute), 7

T
Technology (Power_Supply attribute), 14
Time_SP (DC_Motor attribute), 10
Time_SP (Motor attribute), 7
Touch_Sensor (built-in class), 15
Trigger (LED attribute), 11
Triggers (LED attribute), 11
Type (Power_Supply attribute), 14

U
Ultrasonic_Sensor (built-in class), 17
Units (Sensor attribute), 13

26 Index

	ev3dev Language Wrapper Specification
	Classes
	Device (abstract)
	Motor
	Large Motor
	Medium Motor
	NXT Motor
	Firgelli L12 50 Motor
	Firgelli L12 100 Motor
	DC Motor
	Servo Motor
	LED
	Button
	Sensor
	I2C Sensor
	Power Supply
	Lego Port

	Special sensor classes
	Touch Sensor
	Color Sensor
	Ultrasonic Sensor
	Gyro Sensor
	Infrared Sensor
	Sound Sensor
	Light Sensor

	Constants / Enums
	Ports

	Autogen scripts for ev3dev language bindings
	Usage
	Prerequisites
	Running from the command line

	How it works
	Implementation Notes
	Contributing to the autogen script

